How logic works – solutions

We will start with proofs of several standard results that we can re-use in the proofs below.

Distribution

1   (1) (p∧q)∨(p∧r)  A
2   (2) p∧q          A
2   (3) p            2 ∧E
2   (4) q            2 ∧E
2   (5) q∨r          4 ∨I
2   (6) p∧(q∨r)      3,5 ∧I
7   (7) p∧r          A
7   (8) p            7 ∧E
7   (9) r            7 ∧E
7   (10) q∨r         9 ∨I
7   (11) p∧(q∨r)     8,10 ∧I
1   (12) p∧(q∨r)     1,2,6,7,11 ∨E

Distribution

1   (1) (p∨q)∧(p∨r)  A
1   (2) p∨q          1 ∧E
1   (3) p∨r          1 ∧E
4   (4) p            A
4   (5) p∨(q∧r)      4 ∨I
6   (6) q            A
7   (7) r            A
6,7 (8) q∧r          6,7 ∧I
6,7 (9) p∨(q∧r)      8 ∨I
1,6 (10) p∨(q∧r)     3,4,4,7,9 ∨E
1   (11) p∨(q∧r)     2,4,4,6,10 ∨E

Material conditional

1  (1) ¬p∨q   A
2  (2) ¬p     A
2  (3) p→q    2 neg.para
4  (4) q      A
4  (5) p→q    4 pos.para
1  (6) p→q    1,2,3,4,5 ∨E

Material conditional

1   (1) p→q             A
2   (2) ¬(¬p∨q)         A
3   (3) q               A
3   (4) ¬p∨q            3 ∨I
2,3 (5) (¬p∨q)∧¬(¬p∨q)  4,2 ∧I
2   (6) ¬q              3,5 RA
1,2 (7) ¬p              1,6 MT
1,2 (8) ¬p∨q            7 ∨I
1,2 (9) (¬p∨q)∧¬(¬p∨q)  8,2 ∧I
1   (10) ¬¬(¬p∨q)       2,9 RA
1   (11) ¬p∨q           10 DN

Material conditional

1   (1) p∧¬q        A
2   (2) p→q         A
1   (3) p           1 ∧E
1,2 (4) q           2,3 MP
1   (5) ¬q          1 ∧E
1,2 (6) q∧¬q        4,5 ∧I
1   (7) ¬(p→q)      2,6 RA

Material conditional

1   (1) ¬(p→q)          A
2   (2) ¬p              A
2   (3) p→q             2 neg.para
1,2 (4) (p→q)∧¬(p→q)    3,1 ∧I
1   (5) ¬¬p             2,4 RA
1   (6) p               5 DN
7   (7) q               A
7   (8) p→q             7 pos.para
1,7 (9) (p→q)∧¬(p→q)    8,1 ∧I
1   (10) ¬q             7,9 RA
1   (11) p∧¬q           6,10 ∧I

DeMorgans: first proof

1      (1) ¬(p∧q)               A
2      (2) ¬(¬p∨¬q)             A
3      (3) ¬p                   A
3      (4) ¬p∨¬q                3 ∨I
2,3    (5) (¬p∨¬q)∧¬(¬p∨¬q)     4,2 ∧I
2      (6) ¬¬p                  3,5 RA
2      (7) p                    6 DN
8      (8) ¬q                   A
8      (9) ¬p∨¬q                8 ∨I
2,8    (10) (¬p∨¬q)∧¬(¬p∨¬q)    9,2 ∧I
2      (11) ¬¬q                 8,10 RA
2      (12) q                   11 DN
2      (13) p∧q                 7,12 ∧I
1,2    (14) (p∧q)∧¬(p∧q)        13,1 ∧I
1      (15) ¬¬(¬p∨¬q)           2,14 RA
1      (16) ¬p∨¬q               15 DN

DeMorgans: second proof

1      (1) ¬(p∧q)          A
2      (2) p               A
3      (3) q               A
2,3    (4) p∧q             2,3 ∧I
1,2,3  (5) (p∧q)∧¬(p∧q)    4,1 ∧I
1,2    (6) ¬q              3,5 RA
1      (7) p→¬q            2,6 CP
1      (8) ¬p∨¬q           7 mat.con

Excluded middle

1      (1) ¬(p∨¬p)          A
2      (2) p                A
2      (3) p∨¬p             2 ∨I
1,2    (4) (p∨¬p)∧¬(p∨¬p)   3,1 ∧I
1      (5) ¬p               2,4 RA
1      (6) p∨¬p             5 ∨I
1      (7) (p∨¬p)∧¬(p∨¬p)   6,1 ∧I
       (8) ¬¬(p∨¬p)         1,7 RA
       (9) p∨¬p             8 DN

Exercise 3.4

  1. P → Q ⊢ ¬(P∧¬Q)

    1      (1) p→q              A
    2      (2) p∧¬q             A
    2      (3) p                2 ∧E
    1,2    (4) q                1,2 MP
    2      (5) ¬q               2 ∧E
    1,2    (6) q∧¬q             4,5 ∧I
    1      (7) ¬(p∧¬q)          2,6 RA
  2. ¬(PQ) ⊢ ¬P ∨ ¬Q

    This is DeMorgans. It’s proved above.

  3. ¬(PQ) ⊢ P ∧ ¬Q

    1      (1) ¬(p→q)           A
    2      (2) ¬p               A
    3      (3) p                A
    4      (4) ¬q               A
    2,3    (5) p∧¬p             3,2 ∧I
    2,3    (6) ¬¬q              4,5 RA
    2,3    (7) q                6 DN
    2      (8) p→q              3,7 CP
    1,2    (9) (p→q)∧¬(p→q)     8,1 ∧I
    1      (10) ¬¬p             2,9 RA
    1      (11) p               10 DN
    12     (12) q               A
    12     (13) p→q             3,12 CP
    1,12   (14) (p→q)∧¬(p→q)    13,1 ∧I
    1      (15) ¬q              12,14 RA
    1      (16) p∧¬q            11,15 ∧I
  4.  ⊢ (PQ) ∨ (QP)

    There’s no short proof (in our system) of this result, but the reason why it holds is simple: either p is true or ¬p is true. If p is true, then q→p is true, and hence (q→p)∨(p→q). If ¬p is true, then p→q is true, and hence (q→p)∨(p→q).

    1      (1) ¬(p∨¬p)          A
    2      (2) p                A
    2      (3) p∨¬p             2 ∨I
    1,2    (4) (p∨¬p)∧¬(p∨¬p)   3,1 ∧I
    1      (5) ¬p               2,4 RA
    1      (6) p∨¬p             5 ∨I
    1      (7) (p∨¬p)∧¬(p∨¬p)   6,1 ∧I
           (8) ¬¬(p∨¬p)         1,7 RA
           (9) p∨¬p             8 DN
    10     (10) q               A
    2      (11) q→p             10,2 CP
    12     (12) ¬p              A
    13     (13) ¬q              A
    2,12   (14) p∧¬p            2,12 ∧I
    2,12   (15) ¬¬q             13,14 RA
    2,12   (16) q               15 DN
    12     (17) p→q             2,16 CP
    2      (18) (p→q)∨(q→p)     11 ∨I
    12     (19) (p→q)∨(q→p)     17 ∨I
           (20) (p→q)∨(q→p)     9,2,18,12,19 ∨E
  5. P → (QR) ⊢ (PQ) ∨ (PR)

           (1) p∨¬p             EM
    2      (2) p→(q∨r)          A
    3      (3) p                A
    2,3    (4) q∨r              2,3 MP
    5      (5) q                A
    5      (6) p→q              3,5 CP
    5      (7) (p→q)∨(p→r)      6 ∨I
    8      (8) r                A
    8      (9) p→r              3,8 CP
    8      (10) (p→q)∨(p→r)     8 ∨I
    2,3    (11) (p→q)∨(p→r)     4,5,7,8,11 ∨E
    12     (12) ¬p              A
    13     (13) ¬q              A
    3,12   (14) p∧¬p            3,12 ∧I
    3,12   (15) ¬¬q             13,14 RA
    3,12   (16) q               14 DN
    12     (17) p→q             3,16 CP
    12     (18) (p→q)∨(p→r)     16 ∨I
    2      (19) (p→q)∨(p→r)     1,3,11,12,18 ∨E
  6. (PQ) → ¬Q ⊢ P → ¬Q

    1      (1) (p∧q)→¬q         A
    2      (2) p                A
    3      (3) q                A
    2,3    (4) p∧q              2,3 ∧I
    1,2,3  (5) ¬q               1,4 MP
    1,2,3  (6) q∧¬q             3,5 ∧I
    1,2    (7) ¬q               3,6 RA
    1      (8) p→¬q             2,7 CP

Supplemental exercises

  1. P ∧ ¬Q ⊢ ¬(PQ)

  2. ⊢ ((PQ)→P) → P

    One possibility is to first prove  ⊢ P ∨ ¬P, and then argue by cases. The first case is easy if you remember positive paradox. For the second case, use negative paradox, i.e. that ¬p implies p→q.)

  3. P → (QR) ⊢ ¬R → (¬Q→¬P)

    1       (1) p→(q∨r)         A
    2       (2) ¬r              A
    3       (3) ¬q              A
    4       (4) p               A
    1,4     (5) q∨r             1,4 MP
    6       (6) q               A
    3,6     (7) q∧¬q            6,3 ∧I
    3,6     (8) ¬¬r             2,7 RA
    3,6     (9) r               8 DN
    10      (10) r              A
    1,3,4   (11) r              5,6,9,10,10 ∨E
    1,2,3,4 (12) r∧¬r           11,2 ∧I
    1,2,3   (13) ¬p             4,12 RA
    1,2     (14) ¬q→¬p          3,13 CP
    1       (15) ¬r→(¬q→¬p)     2,14 CP
  4. P → ¬Q ⊢ (PQ) → R

  5. P → ¬Q ⊢ P → (QR)

  6. ¬(PQ) ⊢ P → ¬Q

  7. P  ⊣ ⊢ (PQ) ∨ (P∧¬Q)

  8. P → (QR)  ⊣ ⊢ (PQ) → (PR)

  9. P → ¬P  ⊣ ⊢ ¬P

  10. P → (Q→¬Q)  ⊣ ⊢ P → ¬Q

  11. (PQ) → (P→¬Q)  ⊣ ⊢ P → ¬Q

  12. P  ⊣ ⊢ P ∧ (Q∨¬Q)

  13. P  ⊣ ⊢ P ∨ (Q∧¬Q)

  14. (PQ) → Q ⊢ (QP) → P

  15. (PQ) → R ⊢ (PR) → R

    1       (1) (p→q)→r         A
    2       (2) p→r             A
    3       (3) ¬r              A
    2,3     (4) ¬p              2,3 MT
    5       (5) p               A
    6       (6) ¬q              A
    2,3,5   (7) p∧¬p            5,4 ∧I
    2,3,5   (8) ¬¬q             6,7 RA
    2,3,5   (9) q               8 DN
    2,3     (10) p→q            5,9 CP
    1,2,3   (11) r              1,10 MP
    1,2,3   (12) r∧¬r           11,3 ∧I
    1,2     (13) ¬¬r            3,12 RA
    1,2     (14) r              13 DN
    1       (15) (p→r)→r        2,14 CP
  16. (PR) → R  ⊣ ⊢ P ∨ R

    1   (1) (p→r)→r         A
    2   (2) ¬(p∨r)          A
    3   (3) p               A
    3   (4) p∨r             3 ∨I
    2,3 (5) (p∨r)∧¬(p∨r)    4,2 ∧I
    6   (6) ¬r              A
    2,3 (7) ¬¬r             6,5 RA
    2,3 (8) r               7 DN
    2   (9) p→r             3,8 CP
    1,2 (10) r              1,9 MP
    1,2 (11) p∨r            10 ∨I
    1,2 (12) (p∨r)∧¬(p∨r)   11,2 ∧I
    1   (13) ¬¬(p∨r)        2,12 RA
    1   (14) p∨r            13 DN
    1   (1) p∨r             A
    2   (2) p→r             A
    3   (3) p               A
    2,3 (4) r               2,3 MP
    5   (5) r               A
    1,2 (6) r               1,3,4,5,5 ∨E
    1   (7) (p→r)→r         2,6 CP
  17. (PQ) → P ⊢ P

Exercise S1. Show that ¬¬¬p ⊢ ¬p in intuitionistic logic. i.e. don’t use DN elimination to prove it.

Exercise S2. Suppose that we add the rule ¬(p∧q) ⊢ ¬p∨¬q to intuitionistic logic. Show that we get full classical logic. That is, use this new rule to prove excluded middle, or equivalently, DN elimination.