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To Be a Realist about Quantum Theory

hans halvorson

8.1 Introduction

There is a story that some philosophers have been going around telling. It goes
something like this:

The pioneers of quantummechanics –Bohr, Heisenberg, Dirac, et al. – simply abandoned hope
of providing a realist theory of the microworld. Instead, these physicists settled for a
calculational recipe, or statistical algorithm, for predicting the results of measurements. In
short, Bohr et al. held an antirealist or operationalist or instrumentalist viewof quantum theory.

Implicit in this story is a contrast with the “traditional aspirations of science” to
describe an observer-independent reality. Having built up a sense of looming crisis
for science, the storyteller then introduces us to the heroes, those who would stay
true to the traditional aspirations of science.

As the 20th century moved into its second half, there arose a generation of renegade
physicists with the courage to stand up against antirealism and operationalism. These
valiant men – David Bohm, Hugh Everett, John Bell – renewed the call for a realist
theory of the microworld.

This kind of story can be very appealing. It is the age-old “good guys versus bad guys”
or “us versus them”motif. And those “ist”words make it easy to distinguish the good
guys from the bad, sort of like the white and black hats of the classic westerns.

The story is brought into clearer focus by talking about the quantum wave
function. What divides the realists from the antirealists, it is said, is their respective
attitudes toward the wave function: Antirealists treat it as “just a bookkeeping
device,” whereas realists believe it has “ontological status.” Witness the faux-
historical account of Roger Penrose:

It was part of the Copenhagen interpretation of quantum mechanics to take this latter
viewpoint, and according to various other schools of thought also, ψ is to be regarded as a
calculational convenience with no ontological status other than to be part of the state of
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mind of the experimenter or theoretician, so that the actual results of observation can be
probabilistically assessed.

(Penrose 2016: 198)

I suppose that Penrose can be forgiven for oversimplifying matters, as well as for
propagating the myth of the “Copenhagen interpretation” (see Howard 2004).
After all, there can be great value in simple fictional tales if they get readers
interested in the issues.

I also imagine that Sean Carroll is aiming to generate some heat – rather more
heat than light – when he poses the following dilemma about the wave function:

The simplest possibility is that the quantum wave function isn’t a bookkeeping device at
all . . .; the wave function simply represents reality directly.

(Carroll 2017: 167)

This seemingly simple dilemma – ontological status: yes or no, – is a fine device
for popular science writing, which should not demand too much from the reader.
But is it really the right place to locate a pivot point? Is the question, “Ought I to
commit ontologically to the wave function?” the right one to be asking?

Popular science writers are not the only ones to have located a fulcrum at this point.
In fact, some philosophers say that if you are a scientific realist, then you are logically
compelled to accept the Everett interpretation. I am thinking of this kind of argument:

If you’re a realist about quantum theory, then you must grant ontological status to the
quantum state. If you grant ontological status to the quantum state, and if quantum
mechanics is true, then unitary dynamics is universal. Under these conditions, realism
and unitary dynamics, you have two options: either you accept the completeness of
quantum theory, or you don’t. And if you accept the completeness of quantum theory,
then the Everett interpretation is true.

In short, we are told that the following implication holds:
Realismþ Pure QM ) Everett

Notice how much work realism is supposed to do in this implication!
You might accuse me of caricature, and I am sure I have left out much of the

nuance in this argument. And yet, Everettians regularly gesture in this direction. For
example, Wallace (2013) claims that the Everett interpretation “is really just quan-
tummechanics itself understood in a conventionally realist fashion,” and that “there
is one pure interpretation which purports to be realist in a completely conventional
sense: the Everett interpretation” (Wallace 2008). Similarly, Saunders claims that if
we don’t think of the wave function as a measure of our ignorance, then

the only other serious alternative (to realists) is quantum state realism, the view that the
quantum state is physically real, changing in time according to the unitary equations and,
somehow, also in accordance with the measurement postulates.

(Saunders 2010: 4)
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In short, if you are a good realist, then you will say that the quantum state is
physically real, and from there it is a short step to the Everett interpretation.

There is something strange about this sort of argument. The notion of “realism”
is doing so much of the work – and yet, nobody has told us what it means. How
could the “if realism, then Everett” argument be valid when “realism” has not been
defined clearly? And how could the argument be convincing when realism has not
been motivated, except through its undeniable emotional appeal?

In this chapter, I will take a closer look at the distinction between realist and
antirealist views of the quantum state. I will argue that this binary classification
should be reconceived as a continuum of different views about which properties of
the quantum state are representationally significant. What is more, the extreme
cases – all or none – are simply absurd and should be rejected by all parties. In
other words, no sane person should advocate extreme realism or antirealism about
the quantum state. And if we focus on the reasonable views, it is no longer clear
who counts as a realist and who counts as an antirealist. Among those taking a
more reasonable intermediate view, we find figures such as Bohr and Carnap – in
stark opposition to the stories we have been told.

8.2 Extremists

Suppose that you were asked to list historical figures on two sheets of paper: On
the first sheet, you are supposed to list realists (about the quantum state), and on
the second sheet you are supposed to list antirealists (about the quantum
state). Suppose that you are asked to sort through all of the big names of quantum
theory – Bohr, Heisenberg, Dirac, Bohm, Everett, etc.

I imagine that this task would be difficult, and the outcome might be controver-
sial. For almost none of these people ever explicitly said, “I am a realist” or “I am
an antirealist” or “the wave function has ontological status” or anything like that.
You would have to do quite a bit of interpretative work before you could justify
assigning a person to one of the lists. You would have to assess that person’s
attitude toward the quantum state by studying their behavior and utterances with
respect to it. For example, if person X makes free use of the collapse postulate, with
no proposed physical mechanism, then you might surmise that X is either a mind-
body dualist, or an operationalist about the quantum state, or both. In other words,
an operationalist stance might serve as the best explanation for X’s utterances and
behavior.

The task of sorting people into realist and antirealist would be simpler
for contemporary figures, who seem happy to embrace one of these two labels. For
example, Sean Carroll and Lev Vaidman will tell you, with great passion, that the
wave function is just as real as – in fact, more real than! – a rock, or a tree, or your
spouse. In contrast, Carlo Rovelli speaks of the wave function as Laplace spoke of
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God: Je n’avais pas besoin de cette hypothèse-là. These are just a few examples
among the many philosophers and physicists who have openly labeled themselves
as realist or antirealist about the quantum state. Self-identified state realists include
Esfeld, Goldstein, Ney, Saunders, Wallace, Zanghì, etc. Self-identified state anti-
realists include Bub, Fuchs, Healey, Peres, etc. The battle lines have been clearly
drawn, but what is at stake?

The right-wing extremists say: Quantum wave functions are things. That view is
silly. The left-wing extremists say: Quantum wave functions are just bookkeeping
devices. That view is just as silly.

8.3 Right-Wing Extremists

One might think that the litmus test for realism about quantum theory could be
posed as:

Do you believe that the wave function (more generally, the quantum state)
exists?

Or, as Callender (2015) puts it,

Is the quantum state part of the furniture of the world?

So, when Carroll (2017: 142) says that, “the basic stuff of reality is a quantum
wave function,” he is declaring his allegiance to wave function realism.

But what is this wave function thingy? Should I be thinking about it like
I think about chairs or tables? No, say the philosophers; you have to be a bit
more sophisticated about it. The preferred ontological reading of the wave
function is as a field, on analogy to things like the magnetic field that surrounds
the earth. Thus, to push the ontological picture further, things are represented
by points in the domain of that field, and the properties of those things are the
values of that field. What then are the things according to this ontological
view? Some philosophers say that the wave function is a field on configuration
space (Albert 1996, Ney 2012, North 2013), so that the things are points of
configuration space. Others say that the wave function is a multi-field on
physical space (Forrest 1988, Belot 2012, Chen 2017), so that the things are
spacetime points.

These straightforwardly ontological views have been subjected to many criti-
cisms (see Wallace and Timpson 2010, Belot 2012). Here I want to raise another
kind of objection. Or rather, I want to make a request of the ψ-field theorists:
Would you please describe your theory clearly, including its states, properties, and
the relationship between them? To my mind, the attraction of ψ-field theories is
due in large extent to the vague realist associations that they conjure up in our
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heads: The wave function is a thing with a definite shape! I wager that such theories
are plausible only to the extent that it is unclear what they are really saying.

For starters, in quantum theory, the primary theoretical role of the wave function
ψ is as a state. The ψ-field theorists ask us to change our point of view. Instead of
thinking of ψ as a state, we are to think of ψ as a field configuration. There are
numerous problems with this proposal.

In classical physical theories, the word “state” is shorthand for “a maximally
consistent list of properties that could be possessed by the system simultaneously,”
or equivalently, “an assignment of properties to objects.” In that case, there are two
possible things we could mean by the sentence “the state σ exists.” First, we could
mean that the list of properties exists. But this list is an abstract mathematical
object, which would exist whether or not the corresponding theory is true. So, in
this first sense, “σ exists” is not interesting from the point of view of physics.
Second, we could use “σ exists” as an obscure shorthand for “σ is the actual state,”
which, in turn, is shorthand for saying that certain other objects have certain
properties. Thus, in this second case, “σ exists” is cashed out in terms that do
not refer to σ at all. In philosophers’ lingo, “σ exists” is grounded in facts about
other objects, and so is not really about σ at all.

Now, the defender of quantum state realism might simply say: “That was
classical physics. In quantum physics, the state takes on a new role.” I certainly
accept that quantum physics changes some of the ways we talk about the physical
world. But I am not so sure that it makes sense to reify states. According to the
normal senses of “object” and “state,” we affirm that objects can be in states. Thus,
if states are objects, then states themselves can be in states. But then, to be
consistent, we should reify the states of those states, and these new states will
have their own states, ad infinitum. In short, if you run roughshod over the
grammatical rules governing the word “state,” then you can expect some strange
results.

To continue that line of thought, we assume that things can be counted. In other
words, it makes sense to ask: How many things are there? But then, if states were
things, it would make sense to ask: How many states are there? But now I am
completely puzzled. According to quantum theory, the universe has an infinite
number of potential states, but only one actual state. What in the world would
explain the absence of all the intermediate possibilities? Why couldn’t there have
been 17 states? And what’s more, why do physicists never raise as an empirical
question: How many states are there? The reason is simple: Physicists do not treat
states as they do things, not even in the extended sense where fields also count as
things.

I hope that by this stage you are at least partially convinced that it does violence
to the logic of physical theories to talk about states as if they were things. But then
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you should agree that the role of a wave function is not to denote an object.
Moreover, if ψ does not denote a physical object, then the properties of ψ do not
directly represent the properties of a physical object. Granted, we should be careful
with this latter claim. Even in classical physics, the properties of a state can
represent, albeit indirectly, the properties of a physical object. For example, for a
classical particle, “being in subset Δ of statespace” is a property of states that
represents a corresponding property of the relevant particle. Nonetheless, there are
two different types of things here – the particle, which is a concrete physical object,
and its state, which is an abstract mathematical object. The latter tells us about the
former, but should not be conflated with it.

In classical theories, there is also a sharp distinction between instantaneous
configurations and states. If a configuration is represented by a point in the
manifold M, then a state is represented by a point in the cotangent bundle
T∗M. In many scenarios, T∗M looks like a Cartesian product M �M, where
the first coordinate gives instantaneous configuration, and the second compon-
ent gives momentum. In every case, there is a projection mapping
π : T∗M ! M, and the preimage of any particular configuration q 2 M is an
infinite subset of T∗M. But now, if ψ is both a state and a field configuration,
then it is unclear where it lives. Does ψ live in the space M of configurations,
or does it live in the space T∗M of states? How can it do both jobs at the
same time?

These considerations show that the ψ-field view stretches the logic of classical
physics beyond the breaking point. To treat ψ as representing a field configuration
is to disregard its primary theoretical role as a state. Or, at the very least, to treat it
thus would obscure the difference, central to classical theories, between configur-
ations and states.

If that is not enough trouble for ψ-field views, we can also ask them to give an
account of the properties that are possessed by this thing, the ψ-field. Recall that in
a classical theory with statespace S, properties are typically represented by subsets
of statespace S. (We might require that these subsets be measurable or something
like that. But that point will not matter in this discussion.) Then, we say that the
system has property E � S just in case it is in state σ 2 E.

Now, ψ-field theorists would like us to think of quantum theory on the model of
a classical field theory. In this case, the statespace would be the space C∞ Xð Þ of
smooth complex-valued solutions to some field equation, and subsets of C∞ Xð Þ
would represent properties that the system can possess. (Let us ignore here the fact
that classical field theories typically use the space of real-value functions.) For
example, for any field state f 2 C∞ Xð Þ, the singleton set ff g represents the
property of being in state f , and its complement C∞ Xð Þ∖ ff g represents the property
of not being in state f .
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For the purpose of performing certain calculations, a classical field theorist
might complete C∞ Xð Þ relative to some norm, obtaining a Hilbert space, such as
the space L2 Xð Þ of (equivalence classes of ) square-integrable functions on X. The
elements in L2 Xð Þ are no longer smooth functions, and in fact, they are not really
functions at all – they are equivalence classes of functions under the relation: f � g
just in case

Ð j f � g j dμ ¼ 0.
In contrast, for a quantum theorist, L2 Xð Þ is simply one instance of, or one

representation of, a Hilbert space H of countably infinite dimension. Any two
Hilbert spaces of the same dimension are isomorphic, so it does not matter (for the
physics) which one we choose. The states of the system are represented not by
points in L2 Xð Þ, but by rays. And the properties of the system are represented not
by subsets of L2 Xð Þ but by closed subspaces. Thus, in short, while L2 Xð Þ is used by
both the classical field theorist and the quantum mechanic, it is used in completely
different ways in the two cases. For those of us who believe that the Hilbert space
formalism is intended to represent reality, we could say that it represents reality in
a very different way than a classical field theory does.

The ψ-field views ask us to forget the differences between quantum mechanics
and classical field theories. But it will not be easy to forget these differences
without doing violence to the representational role of the various pieces of the
Hilbert space formalism. A classical theory comes with representatives (subsets of
statespace) for many properties that are not represented in the Hilbert space
formalism. The ψ-field theorist wants to lay claim to all these properties – for this
seems to provide the coveted “god’s-eye view” of reality. In effect, the ψ-field
picture is designed to make us feel like we have evaded the Kochen-Specker
theorem. For, if physical properties are represented by subsets of L2 Xð Þ, or by
the mathematical properties of a function ψ 2 L2 Xð Þ, then each such property is
either definitely possessed or definitely not possessed when the system is in state ψ.
This view is intended to hide (or ignore? or deny?) the fact that a quantum state
does not answer all questions about which properties are possessed.

What is more, the ψ-field view only follows classical physics as far as giving an
instantaneous snapshot of the possessed properties. As soon as it comes to drawing
inferences about the system, it imposes ad hoc rules to block fallacious inferences.
For example, in a classical field theory, if σ and σ0 are distinct field states, then
knowing that the system is in state σ permits you to assert that the system is not in
state σ0. Or in probabilistic terms, the probability of σ0 conditional on σ is 0. If you
carry that inference rule over directly into quantum theory, then you will make
false predictions. A Gaussian function ψ centered at 0 is a different field state than
a Gaussian function ψ0 centered at 0:01. Thus, on a classical picture, the property E
of “being in state ψ” is inconsistent with the property E0 of “being in state ψ0 ,” and
Pr E0jEð Þ ¼ 0. But quantum theory says that Pr E0jEð Þ � 1.
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Of course, ψ-field theorists are too clever to fall into the trap of carrying
classical inference rules into the quantum domain. Although they purport to view
the ψ-field classically, they stop short when it comes to reasoning about it. For the
purposes of reasoning and making predictions, they turn to the Hilbert space
formalism to guide them. Thus, we might summarize the attitude of these ψ-field
views in a phrase: You can look at the world from the god’s-eye point of view; just
don’t reason about it as god would.

8.4 Left-Wing Extremists

At one extreme, we have people telling us that the wave function is part of the
furniture of reality. At the opposite extreme, we have people telling us that the
wave function is “a mere calculational device” (Rovelli 2016: 1229), and that “it is
mistaken to view the universal wave-function as a beable” (Healey 2015). This
second group of extremists is a curious bunch. They protest loudly against the
wave function, producing elaborate (and interesting) arguments against its onto-
logical status. And yet, they cannot seem to live without it. In their books and
articles, they accord a privileged role to the wave function. When they want to say
something true about a quantum system, they consult the wave function before
anything else. It makes one wonder: If they do not believe in the wave function,
then why do they grant it a special role in their representations of reality?

The practice in physics, followed by realists and antirealists alike, is that each
classically described “preparation” or “experimental setup” may be represented
by a unique quantum state. In fact, the ability to associate quantum states to
classically described experiments is one of the skills that displays mastery of
quantum theory. Once an experiment has been adequately described, then there is
no remaining latitude for idiosyncratic or subjective state assignment. There is
just one correct state, as will be borne out by checking the statistics of measure-
ment outcomes. The fact that physicists have correctness standards for quantum
state assignments strongly suggests that they grant these states some sort of
representational role.

Healey (2017) makes exactly this point, and he uses it to make an argument for
quantum state objectivism, i.e., the belief that there are objectively correct ascrip-
tions of quantum states to physical systems. But isn’t this sort of state objectivism
strictly inconsistent with state antirealism? If the quantum state is not real, then
how could one be wrong about the quantum state? In order to answer this question,
Healey engages in subtle reasoning about how objective correctness can be disen-
tangled from the correspondence theory of truth and about how the meaning of the
quantum state can be accounted for in an inferential theory of content. This just
goes to show that matters are not as simple as they initially appeared to be.
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Healey’s subtlety is laudable, but sometimes it verges on doublespeak. For
example, Healey hangs much on the distinction between ascribing a state ψ to a
thing X, and describing X with ψ.

Pragmatists agree with QBists [quantum Bayesians] that quantum theory should not be
thought to offer a description or representation of physical reality: in particular, to ascribe a
quantum state is not to describe physical reality.

(Healey 2016: on line, emphasis added)

What are we supposed to be doing when we “ascribe” a quantum state? If ψ has no
representational role whatsoever, then why speak of “ascribing” it to a physical
object or situation? Why not just speak of “using” the wave function – as one uses
a computer or a hammer – to get a job done?

In the English language, the word “ascribe” involves a subject postulating a
relation between two objects: S ascribes Y to X. More is true: In normal conversa-
tion, to ascribe Y to X involves judging that there is a preexisting relation between
Y and X. For example, “He ascribed Jane’s short temper to her upset stomach.” In
this way, ascribing is different than using: I can use Y to do something to X without
making any judgment about the relation between Y and X. These considerations
show that the word “ascribe” is tantalizingly close to other words – such as
“describe” – that connote the existence of a representational relation, exactly the
sort of thing that Healey wishes to deny. To consistently carry out his pragmatist
program, Healey should use a different word than “ascribe.”

Here is what I think is really going on here. The phrase “Y describes X” is rather
vague; and being vague, it can be thought to license all sorts of inferences about the
relationship between Y and X. When people say that “Y describes X,” they tend to
import a lot of baggage that goes far beyond the simple existence of a representa-
tional relation between Y and X. In fact, it seems all too easy to fall into the mistake
of thinking that Y describes X only if Y is similar to X. Of course that is not true:
The phrase “is over 6 feet tall” describes Goliath, but this phrase is not similar to
Goliath.

That temptation to assume similarity is all the more difficult to resist when the
first argument of “Y describes X” is a geometrical object, such as a wave function.
The reason we fall into this trap, I assume, is because we do frequently use
geometric objects as pictorial representations. For example, I might draw a rect-
angle on a piece of a paper and say, “This rectangle describes the shape of my
desk.” In this case, the rectangle on the paper is indeed similar to the desk in a well-
defined mathematical sense.

Healey, Rovelli, and other self-proclaimed antirealists have surrendered too
much to their opponents. They have allowed their opponents to define words like
“ontological status” and “describes.” Then, because Healey and Rovelli reject the
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implications that come along with this particular definition of “describes,” they are
forced to say that the quantum state does not describe at all. Thus, Healey and
Rovelli lay themselves open to the charge of antirealism – which, of course, carries
highly negative connotations. To be an antirealist implies a sort of failure of
courage – it implies a sort of retreat. Ergo, Healey and Rovelli are seen as making
less bold assertions about reality than their realist counterparts are making.

8.5 The State as Directly Representing

Are you a realist about the quantum state? We have already seen that this question
cannot be paraphrased as: Do you believe that the quantum state exists? So what
could the question mean? According to Wallace and Timpson,

Traditionally realist interpretations . . . read the quantum state literally, as itself standing
directly for a part of the ontology of the theory.

(Wallace and Timpson 2010: 703)

In fact, Wallace (2018b) locates the crucial divide between “representational” and
“non-representational” views of the quantum state. Thus the shift is signaled from
the material mode of speech (does the state exist?) to the formal mode of speech
(does the state represent?). In particular, Wallace and Timpson claim that realism
involves commitment to both literal and direct representation. Thus, Carroll utters
the shibboleth when he says, “the wave function simply represents reality directly”
(Carroll 2017: 167). But what work is the word “directly” doing here? I am led to
think that the task of representing must be a bit like getting to work, where you
have to take the right turns in order to follow the most direct route. So what are the
instructions for following the direct route to representation?

When a person says that Y represents X, then that typically signals that the
person endorses some inferences of the form

(†): If Y has property ϕ, then X has property ϕ0,

where ϕ↦ ϕ0 is some particular association of properties (the details of which need
not detain us). Let us call (†) a property transfer rule. For example, if I say that a
certain map represents Buenos Aires, then I mean that some facts about Buenos
Aires can be inferred from facts about the map.

What then is the force of insisting that Y does not merely represent X, but that it
represents X directly? I suspect that the word “directly” is supposed to signal
endorsement of quite liberal use of property transfer rules. But just how liberal?
The key question to keep in mind is: Which specification of permitted property-
transfer inferences corresponds most closely to the notion of “direct representa-
tion” that is favored by realists such as Carroll, Wallace, Saunders, and Timpson?
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When they say that “ψ directly represents reality,” what exactly are they saying
about the relation between ψ and the world?

Consider first the proposal:

(DR1) Y directly represents X just in case every property of Y is also a property of X.

This proposal is logically consistent, but also absurd. One of the properties that X
has is being identical to X. Thus, according to DR1, if Y directly represents X then
Y ¼ X. Could Wallace and Timpson possible intend this? Does Carroll mean to
say our universe is a subset of R3n � C? If so, then scientific realism is truly a
radical point of view. The wave function is an abstract mathematical object. Thus,
if the universe is a wave function, then the universe is an abstract mathematical
object. Perhaps mathematicians will applaud this conclusion, because then pure
mathematics tells us everything there is to be known about the universe.

I suspect that the realists do not mean their direct representation claim in the
sense of DR1. Let us try a more reasonable proposal.

(DR2) Y directly represents X just in case each mathematical property of Y corres-
ponds to some physical property of X.

Here we need some precise account of the “mathematical properties” of Y .
According to standard set-theoretic foundations of mathematics, the mathematical
properties of Y are precisely those properties that can be described in the language
of Zermelo-Fraenkel (ZF) set theory. Thus, for example, the mathematical proper-
ties of Y would include its size (cardinality). In contrast, arbitrary predicates in
natural language do not pick out mathematical properties of Y . For example, “is an
abstract object” cannot be articulated in ZF set theory, and so would not count as a
mathematical property of Y . Thus, DR2 does not say that “anything goes” in terms
of the representationally significant properties of Y .

Even so, DR2 is still implausibly profligate in the number of representationally
significant properties it assigns to the wave function. In particular, for each
definable name c in ZF set theory, there is a definable predicate Θc given by

Θc Sð Þ $ c 2 S:

Among these definable set names, we have ∅, ∅f g, and so on. Now, a wave
function is a function ψ : A ! B, with domain set d0f ¼ A and codomain set
d1f ¼ B. Thus, for any definable name c, it makes sense to ask whether
Θc d0ψð Þ, i.e., whether c is contained in the domain of ψ.

Imagine now the following scenario. Two physicists, Jack and Jill, are arguing
about whose wave function is a better representation of the universe. The funny
thing is, Jack and Jill’s wave functions are both Gaussians, centered on 0, and with
the same standard deviation. If you ask Jack to draw a picture of his wave function,
then he draws a Gaussian centered at 0. If you ask Jill to draw a picture of her wave
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function, then she also draws a Gaussian centered at 0. They agree that this picture
is a correct representation of their respective wave functions. They also agree that
their wave functions are written in the configuration space basis, and that the origin
0 represents the same point in the universe. It seems that there is nothing left for
them to disagree about.

And yet, Jack and Jill insist that their wave functions cannot both be correct.
According to Jack, the correct wave function ψ has the property that Θ∅ d0ψð Þ, that
is, the empty set is an element of the domain of the wave function. According to
Jill, the correct wave function ψ0 does not have that property. They both believe
that Θ∅ corresponds to a genuine physical property. Jack asserts that this property
is instantiated, and Jill asserts that it is not.

Jack and Jill would fail their quantum mechanics course. They do not under-
stand how the theory works. In using the formalism of quantum theory to represent
reality, we do not care about these fine-grained set theoretic differences. If
two wave functions have the same shape, then we consider them to be the same.
If two wave functions can be described via the same equation, then we take them to
be identical. But what is this notion of same shape that we are using here? How can
we tell when two wave functions are the same, at least for the purpose of doing
physics?

At this point, we might want to lay down the ace card of recent philosophy of
science: the notion of isomorphism. Can’t we just say that two wave functions are
representationally equivalent just in case they are isomorphic? In this case, we
could then propose the following criterion for direct representation:

(DR3) Y directly represents X just in case Y and X are isomorphic.

This proposal sounds a lot more plausible than the previous two – especially
because the word “isomorphism” is simultaneously precise (within certain fixed
contexts) and flexible (since it means different things in different contexts). But
that is precisely the problem with DR3: the phrase “Y is isomorphic to X” is no
better defined than the phrase “Y directly represents X.”

In mathematics, isomorphism is a category-relative concept. If you hand me two
mathematical objects and ask, “Are they isomorphic?” then I should reply by asking
“Which category do they belong to?” For example, two mathematical objects can be
isomorphic qua groups, but nonisomorphic qua topological spaces. Thus, it makes no
sense to say that a mathematical object is isomorphic to the world tout court. In order
to make sense, we would first have to specify a relevant type (or category) of
mathematical objects. For example, one might say that the world is isomorphic to a
topological space Y , as shorthand for saying that the world has topological structure,
and is in this sense isomorphic to Y . But if you giveme a concretemathematical object
A and say that the world is isomorphic to A, then I have no idea what you are saying.
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So, if we want to say that the world is isomorphic to a wave function ψ, then we
need to say what category of mathematical objects we take ψ to belong to. And that
is not going to be easy, for ψ is not a group, or a topological space, or a
differentiable manifold, or any other of the standard types of mathematical struc-
ture. There is no category of wave functions; and, there is no nontrivial notion of
isomorphism between wave functions. It will not help to say that ψ and ψ0 are
isomorphic wave functions just in case there is a unitary symmetry U such that
Uψ ¼ ψ0, for in that case, all wave functions would be isomorphic. The closest we
come to finding a home for ψ is in the category of Hilbert spaces: ψ is an element
of a Hilbert space, which is an object in the category of Hilbert spaces. But that will
not help, because we do not want to say that the world is isomorphic to the Hilbert
space H, but that it is isomorphic to a particular wave function ψ.

There are numerous other problems with analyses of representation in terms of
isomorphism, some of which are discussed in a recent article by Frigg and Nguyen
(2016). We mention two further problems here, each of which might be taken to
deliver a fatal blow to the account. First, an isomorphism is a function between two
mathematical objects, and the world is not a mathematical object. In fact, as
pointed out long ago by Reichenbach (1965), the only grip we have on the
structure of the world is by means of our representations.

Second, our account of representational significance should mesh with our
account of theoretical equivalence, and many philosophers of science hold views
of theoretical equivalence according to which equivalent theories need not have
isomorphic models. For example, Halvorson (2012) labels this view as “the model
isomorphism criterion of theoretical equivalence,” and he argues that it must be
rejected. However, if the model isomorphism criterion of theoretical equivalence is
rejected, then we must also reject the claim that representation entails isomorphism
between the world and one of the theory’s models. We can argue as follows: If two
theories T and T 0 are equivalent, and if T is representationally adequate, then T 0 is
also representationally adequate. But if the models of T are not isomorphic to the
models of T 0, then it cannot be the case that the world is isomorphic to a model of
T and also to a model of T 0. Therefore, to say that T is representationally adequate
does not entail that the world is isomorphic to one of the models of T .

8.6 Representationally Significant Properties

As we have seen, isomorphism-based analyses of representation have difficulty
explaining how wave functions represent – because there is no obvious candidate
notion of “isomorphism” for wave functions. Perhaps, however, we can attack this
problem from the other side. Having a notion of isomorphism in place gives us a
criterion for identifying representationally significant properties:
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A property ϕ is representationally significant just in case ϕ is invariant under
isomorphism.

But of course, we need not already have a notion of isomorphism in place to
choose the representationally significant properties. We can simply say what those
properties are.

As we know, it would be disastrous to propose that all mathematical proper-
ties of a wave function are representationally significant. For example, the
property of “having domain that contains the element ∅; ∅f gf g” is a perfectly
good mathematical property that a wave function either possesses or does not
possess. But nobody, to my knowledge, has ever proposed that this mathemat-
ical property represents a bona fide physical property. In practice, we simply do
not care whether we use a wave function ψ that has that property or a similar
wave function ψ0 that lacks that property. Many of these set-theoretically
definable properties of a wave function are routinely ignored as “surplus
mathematical structure.”

In my experience, physicists cannot usually say explicitly which properties of ψ
are representationally significant. However, we can determine which properties of
ψ they care about by watching what they do. If they treat two wave functions ψ and
ψ0 as interchangeable, then their behavior suggests that they accord no representa-
tional significance to properties that separate these two functions. Here we say that
a property Θ separates ψ and ψ0 just in case Θ ψð Þ and ¬Θ ψ0ð Þ.

The art of discriminating between wave functions is not so unlike the fabled art
of “chicken sexing.” The skilled chicken-sexer has the ability to judge reliably
whether two chicks are of the same sex. But if you ask what criteria he or she is
using, the chicken-sexer will be at a loss for words. In the same way, the skilled
quantum mechanic has the ability to judge whether two wave functions are
representationally equivalent. And he or she displays his or her judgment of
representational equivalence by his or her disinterest in the question: Which of
these two wave functions provides the correct representation of reality?

I am not sure that it would be possible to give a fully explicit account of the
equivalence relation of “representational equivalence” for wave functions. None-
theless, there are certain sufficient conditions for representational equivalence that
are uncontroversial.

First, two wave functions are representationally equivalent if one is a complex
multiple of the other, i.e., if they lie in the same ray in Hilbert space. Thus, if a
property Θ of wave functions is not invariant under this relation (of lying in the
same ray) then Θ is not representationally significant. For example, consider the
property Θ given by

Θ ψð Þ $ ψ 0ð Þ ¼ 1ð Þ:
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Clearly there are two functions ψ and ψ0 such that ψ � ψ0, but Θ ψð Þ and ¬Θ ψ0ð Þ.
Therefore, Θ is not a representationally significant property of wave functions.

Second, wave functions are not actually functions at all. In fact, the space of
square integrable functions on configuration space is not a Hilbert space. Instead,
to define a positive-definite inner product, one has to take equivalence classes of
functions relative to the equivalence relation � of “agreeing except on a set of
measure zero.” But now consider the property Θ defined by:

Θ ψð Þ $ ψ 0ð Þj j2 ¼ 1
� �

:

Again, there are two functions ψ and ψ0 such that ψ � ψ0, but Θ ψð Þ and ¬Θ ψ0ð Þ.
Therefore, Θ is not a representationally significant property of wave functions.

This is not to say that there are no representationally significant properties of
wave functions. For example, consider the property

Θ ψð Þ $
ð
Δ
jψ xð Þ j dμ xð Þ ¼ 1:

This propertyΘ can be shown to be invariant under the equivalence relationsmentioned
previously. Indeed, practitioners of quantum theory know exactly what this property is:
It is the property Q 2 Δ½ � of being located in the region Δ. What other invariant
properties are there? Can we give some sort of systematic description of them?

As mentioned before, the Hilbert space formalism is normally taken to represent
properties by means of the subspaces of the statespace. Let us think about how this
works in the case of the space L2 Xð Þ of (equivalence classes of ) wave functions.
What does a subspace of L2 Xð Þ look like? Some subspaces correspond to proper-
ties of functions. For example, consider the property

Θ ψð Þ � ψ has support in the region Δ:

It is not difficult to see that the set of functions satisfying Θ forms a closed
subspace of L2 Xð Þ. But not every subspace of L2 Xð Þ has such an interpretation
in terms of straightforwardly geometric features of functions. For example, let
U : L2 Kð Þ ! L2 Xð Þ be the unitary isomorphism between the momentum-space
and position-space representation of wave functions. Now begin by defining the
same sort of subspace, but relative to the momentum-space representation. That is,
let E be the subspace of L2 Kð Þ consisting of functions with support in Δ. The
natural interpretation of E is: having momentum value in the set Δ. Then U Eð Þ is a
subspace of L2 Xð Þ, and hence, represents a quantum-theoretic property Θ. But this
property Θ does not manifest itself as a natural property of functions on the original
configuration space X. Indeed, it is not clear that it would be possible to express Θ
without making reference to the isomorphism between L2 Kð Þ and L2 Xð Þ.
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We have here a nice concrete example of an issue that philosophers have
been discussing in the abstract – the issue of abundant versus sparse views of
properties (see Bricker 1996). The Hilbert space formalism gives a special
version of the sparse view of properties: Not every subset of L2 Xð Þ corres-
ponds to a natural property. One might think initially that this sparse view
makes life difficult by preventing us from saying certain things. For example,
as Wallace (2012) points out, this sparse view entails that “has a definite value
of energy” fails to pick out a property (a consequence which he finds to be
unacceptable).

However, there is an obvious problem with trying to take an abundant view of
the properties of quantum theory, i.e., with taking every subset of L2 Xð Þ to pick out
a physical property. The problem is that there are too many such subsets, and their
physical interpretation is unclear. Nonetheless, the Hilbert space formalism pro-
vides a method for identifying those subsets of L2 Xð Þ that represent physical
properties. In particular, we have the following result:

(SQ) Let H be an abstract Hilbert space of countably infinite dimension. Then each
subspace of H is of the form U�1 Z 2 Δ½ �, where U : H ! L2 Rð Þ is a unitary
isomorphism, Δ is a Borel subset of R, and Z 2 Δ½ � is the subspace of functions
with support in Δ.

(This result is part of the folklore of functional analysis, and may be reconstructed
from the results in chapter 9 of the book by Kadison and Ringrose [1991].) Here,
we think of L2 Rð Þ as wave functions of some particular dynamical variable Z,
which could be position (along some axis), or momentum (along some axis), or
energy, or . . . In this case, U�1 Z 2 Δ½ � is the subspace of wave functions where the
value of Z lies in Δ. In other words, U�1 Z 2 Δ½ � and Z 2 Δ½ � represent the same
property – only, this property’s physical interpretation is more perspicuous in the
latter case.

Thus, there is a nontrivial question about which properties of functions (i.e.,
subsets of L2 Xð Þ) represent bona fide, or “natural,” physical properties. Take an
arbitrary mathematical predicate of functions, such as

Θ ψð Þ � ψ is a smooth i:e:; infinitely differentiableð Þ function,
which seems to be quite natural, at least from a mathematical point of view. But
why suppose that Θ represents a natural physical property? What criteria should
we use to sort out the genuine predicates from the spurious predicates? Some might
suggest an operationalist criterion:

(operationalist) A predicate Θ of wave functions represents a natural physical property if
and only if there is a measurement that would verify whether an object’s state ψ has
property Θ.
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But that criterion is too imprecise. And, in any case, the operationalist criterion is
stricter than quantum theory’s own criterion, which countenances many natural
properties that cannot be operationally detected.

The language of quantum theory, represented via the Hilbert space formalism,
comes with a vocabulary, including a list of predicates.

(QM properties) A predicate Θ of wave functions represents a natural physical
property if and only if the set ψ 2 L2 Xð Þ j Θ ψð Þf g is a subspace of L2 Xð Þ.

By this result, the previous criterion can be restated as follows:

(QM properties) A predicate Θ of wave functions represents a natural physical
property if and only if there is a dynamical variable Z, and a measurable Δ � R, such
that Θ ψð Þ if and only if ψ lies in the subspace Z 2 Δ½ �.

These predicates can then be taken as giving quantum theory’s preferred account of
natural properties. In short, the natural properties are precisely those picked out by
saying that a quantity Z has value in a certain range.

So, we return to the original question: If Θ ψð Þ is the predicate “ψ is a
smooth function,” then does Θ pick out a physical property of wave functions?
Quantum theory answers this question by saying: Θ represents a physical
property only if there is some quantity Z such that that Θ picks out the subspace
Z 2 Δ½ �.
When we talk about giving a “physical interpretation” to a subset E of state-

space, the demand is not that E be given an operational interpretation, as, e.g.,
corresponding to some measurement operation. Instead, we are simply asking that
the mathematical object E be describable in words that have some antecedent
physical meaning. It is simply the demand that we understand what the formalism
purports to represent.

8.7 Reading the State Literally

Recall that Wallace and Timpson say that a quantum state realist does two things:
(1) he or she believes that the state represents reality directly, and (2) he or she
reads the state literally. As we saw, there are various ways of cashing out “Y
directly represents X.” If you push the notion to the extreme, where Y ¼ X, you
will end up saying stupid things; however, as soon as you start to nuance this
notion, you start to sound less like a full-blooded realist.

So can we find a firm foothold for realism in the second criterion? Is it the
commitment to a “literal reading of the state” that sets the quantum state realists
apart from their antirealist counterparts? Here we have tapped into a central vein in
philosophical discussions of scientific realism. For example, 40 odd years ago, van
Fraassen described scientific realism as the belief that
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The aim of science is to give us a literally true story of what the world is like; and the
proper form of acceptance of a theory is to believe that it is true.

(van Fraassen 1976: 623, emphasis added)

The debates of the last 40 years seem not to have brought into question the
connection between realism and literalism. In a recent authoritative account of
scientific realism, Chakravartty reasserts the connection:

Semantically, realism is committed to a literal interpretation of scientific claims about
the world.

(Chakravartty 2017: on line, emphasis added)

But something fishy must be going on here. The idea that a scientific theory is a set
of claims (i.e., sentences) fell out of favor about 40 years ago. Nowadays, most
philosophers of science say that a scientific theory consists of a collection of
models, plus some claim to the effect that one of these models represents the
world. But if a theory is a collection of models, then how am I supposed to read it
literally? Nor can this problem be brushed away by adopting a different view of
scientific theories. For better or worse, the theories of mathematical physics
involve collections of mathematical models, such as Lorentzian manifolds, Hilbert
spaces, etc. So how then are we supposed to read these theories literally?

The answer, in short, seems to be: To read a theory literally is to take one of its
modelsM as a reliable guide to features of the world. But now we are right back to
where we were when considering analyses of “Y directly represents X.” If I am a
literalist about M, then which features of M should I take to be representationally
significant? The simple answer “all features of M” leads immediately to absurdity.
The answer “all mathematical features of M” also leads to a bizarre and untenable
picture. Thus, we are thrown back on a more piecemeal approach, where one has to
know how to interpret the model M, which means being able to distinguish its
representationally significant properties from the insignificant ones.

Indeed, learning how to use a physical theory requires that learning the art of
“reading claims off” of a model. Consider, for example, the general theory of
relativity (GTR), where a model M is a Lorentzian manifold. What might it look
like to readM literally? Well, GTR claims that at each point p 2 M, there is a four-
dimensional tangent space Tp. And living on top of Tp there is an infinite tower of
m; nð Þ tensors, for all natural numbers m and n. Are these things I have just said
among the “scientific claims” of GTR? If I am a realist about GTR, then am
I committed to these claims? Should I envision an infinitely extended tangent space
Tp of four dimensions sitting on the tip of my nose, and indeed, a different such
tangent space for each instant of time? Are these tangent spaces “part of the
furniture of the world”? If this is what it means to be a realist about GTR, then
Einstein himself was no realist.
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To make the point more clearly, GTR entails that

For each point p 2 M, there is an open neighborhood O of p, and a coordinate chart
ϕ : O ! R4.

These coordinate charts are just as much elements of a model of GTR as a wave
function is an element of a model of QM. Thus, if literalism demands commitment
to the wave function ψ, then it also demands commitment to the coordinate chart ϕ.
If quantum state realism is just a “literal reading of QM,” then coordinate chart
realism is just a “literal reading of GTR.”

If you do not think that GTR involves a commitment to an ontology of tangent
spaces, coordinate charts, etc., then I can only agree: Not every true statement,
made within the language of a theory, is one of the “scientific claims” of that
theory. To say that a model M accurately represents the physical world does not
mean that every mathematical thing in M represents a physical thing. Realism,
according to Chakravartty, Timpson, Wallace, van Fraassen, et al., requires com-
mitment to the scientific claims of a theory, interpreted literally. But you cannot
interpret a mathematical object literally. That simply does not make sense. The
demand for literal interpretation only makes sense after we have used the formal-
ism to express claims in a language that we understand.

Here we have to lay some blame at the door of the semantic view of theories.
The semantic view of theories plus realism suggests the idea that one ought to
interpret models literally – an idea that can lead to absurd consequences if not
further nuanced. A model’s elements need not all play the same representational
role. For example, suppose that I make a map of Princeton University, on which
I draw several buildings. Suppose that I also draw a picture of a compass in the
lower right hand corner of my map – to indicate its orientation. Now, I am a
realist about the geography of Princeton, and I believe that my map is a faithful
representation of it. But that does not mean that I believe there is a huge compass
lying on the ground just outside of the university. Nor would I say that the
compass on the map is “just a bookkeeping device” or that it “has no representa-
tional role.” The compass does have a representational role: It represents a claim
about how my map is related to the actual town of Princeton. And if this compass
can be said to have a representational role, then so can a wave function. (For an
illuminating investigation of the notion of “literal interpretation,” see Hirsch
2017).

8.8 Spacetime State Realism

The most recent development in the realist ontology program is the proposal to
upgrade wave function realism to “spacetime state realism” (see Wallace and
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Timpson 2010; Wallace 2018a). But does this technical maneuver dodge the
various philosophical problems that confront wave function realism? In order to
press the question further, we need to sketch the idea behind spacetime state
realism.

Let us begin with the simplest (and least interesting) case of spacetime state
realism – the case where spacetime consists of a single point. In this case, we
represent a quantum system by means of a C∗-algebra A of observables (For
an account of this formalism, see Ruetsche 2011). The important point is that
A is closed under operations of addition, multiplication, and conjugation
A↦A∗. Moreover, there is a preferred multiplicative unit I 2 A, the identity
operator. The prototypical case of a C∗-algebra is the algebra of n� n complex
matrices.

We need a few definitions. An operator A 2 A is said to be self-adjoint just in
case A∗ ¼ A, and A is said to be positive just in case A ¼ B∗B for some operator
B 2 A. A function ω : A ! C is said to be a linear functional just in case
ω cAþ Bð Þ ¼ cω Að Þ þ ω Bð Þ for all A,B 2 A and c 2 C. A linear functional ω is
said to be positive just in case ω Að Þ 	 0 for every positive operator A 2 A.
A positive linear functional ω is said to be a state just in case ω Ið Þ ¼ 1. We will
use Σ Að Þ to denote the space of states of A.

We can formulate quantum mechanics in the language of C∗-algebras just as
well as we can in the language of Hilbert spaces. Indeed, the self-adjoint operators
in A represent observables (or more accurately, quantities), and the elements of
Σ Að Þ represent physical states. As a particular case in point, if A is the algebra of
2� 2 matrices, then the self-adjoint operators are simply the Hermitian matrices,
and the states on A correspond one-to-one with density operators on C2 via the
equation

ω Að Þ ¼ Tr WωAð Þ:
With these definitions in hand, we can state Wallace and Timpson’s proposal quite
simply:

For a system represented by the algebra A, the properties correspond one-to-one with the
states in Σ Að Þ.
This proposal can be made more picturesque and plausible if you think of a “field
of states,” where each point p in spacetime is assigned a state ωp. And if you feel
that this is just empty mathematics, then it might help to think of the typical case,
where ωp is represented concretely by a density operator Wp. Then the field
p↦Wp of density operators starts to look more like a classical field configuration,
where some mathematical object, such as a tensor, is assigned to each point in
space. The only mathematical difference is thatWp is a complex matrix instead of a
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tensor. But as Wallace and Timpson point out, the relative unfamiliarity of
complex matrices such as Wp should not rule them out as legitimate values of a
physical field.

To this point, I agree with Wallace and Timpson. What bothers me is not the
difference between tensors and complex matrices. What bothers me is the confla-
tion of the various theoretical roles of states, quantities, and properties. The typical
job of states is to assign values to quantities. So, if we ask states also to serve as
values of quantities, then the job of states will be to assign states. In order to try to
keep things straight in our heads, we might try to declare some “types.” First, the
standard way of thinking of states is that they are of type Q ! V, where Q is the
quantity type, and V is the value type. But now, Wallace and Timpson tell us that
states are also of type V. In this case, states would be both of type Q ! V and of
type V, resulting in a type confusion.

What’s more, we typically ask a physical theory to provide some sort of “state-
to-property” link. For example, the so-called orthodox interpretation of quantum
theory proposes the eigenstate-eigenvalue link:

(EE link) A property E of the system is possessed in state ψ just in case Eψ ¼ ψ.

Wallace and Timpson also propose a state-to-property link. However, their prop-
erties are of the form “being in state W ,” and so their proposal reduces to:

(WT link) A system has property W when it is in state W

Or perhaps it would be better to say:

(WT link) A system has the property of being in state W just in case it is in state W .

I suppose this claim is true. But I did not need to learn any physics to draw that
conclusion. This is nothing more than a disquotational theory of truth.

Is it possible that Wallace and Timpson’s proposal only trivializes in the trivial
case – where spacetime consists of a single point? Perhaps their proposal is only
meant to give an interesting picture in the case where we associate a different
algebra of observables A Oð Þ to each region O of spacetime. In that case, their
recipe would yield a much richer structure, something like a co-presheaf of states
(see Swanson 2018). But I do not see any reason to think that this additional
mathematical structure can undo the conflation of states and properties that already
occurs at the level of individual algebras.

Finally, even if you can get past these other worries, there is a worry that the
Wallace-Timpson proposal shows too much. Indeed, there is a case to be made that
any reasonable generalized probability theory can be formulated in the framework
of C∗-algebras. In that case, it would seem that the Wallace-Timpson proposal
yields a realistic physical ontology for any reasonable generalized probability
theory. In other words, it is realism on the cheap.
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8.9 The Wave Function as Symbol

We began our discussion with the dilemma: Either the quantum state has onto-
logical status, or it does not. We saw that this dilemma cannot be taken seriously,
because a state is not a candidate for existence or nonexistence in the physical
sense. Thus the original ontological dilemma was transformed into a representa-
tional one: Either the quantum state represents reality, or it does not. But then we
discovered that “represents” can be understood in many different senses – and in
the most extremely realistic sense of “represents,” no sane person would say that
the quantum state represents the world. Thus, the disagreement between realists
and antirealists – where it is not simply a matter of emotional associations with
words – boils down to different stories about how to use the quantum state to
represent reality.

It is ironic then, that early interpreters of quantum theory – such as Bohr and
Carnap – are often assumed to be operationalists about the quantum state. That
could not be further from the truth. Both Bohr and Carnap explicitly say that the
wave function is not merely a calculational device. Presumably, somebody ran a
word-search on Bohr and Carnap’s writings, and having found no hits for “ψ
represents reality directly” or “ψ has ontological status,” they concluded that these
guys must have been antirealists.

There is another possibility that we should take seriously.What if Bohr and Carnap
intentionally exercise caution with words like ontological status and direct represen-
tation, because those words might lead to a misunderstanding of how quantum theory
works? Perhaps Bohr and Carnap were groping their way, if ever so haltingly, toward
a more articulate account of how the wave function represents reality.

8.9.1 Bohr

Analytic philosophers have been quick to categorize Bohr as an operationalist
about the wave function, citing statements like this one:

the symbolic aspect of Schrödinger’s wave functions appears immediately from the use of
a multidimensional coordinate space, essential for their representation in the case of atomic
systems with several electrons.

(Bohr 1932: 370)

Faye, for example, seems to think that Bohr’s use of “symbolic” is code for
“should not be taken literally.”

Thus [for Bohr], the state vector is symbolic. Here “symbolic” means that the state vector’s
representational function should not be taken literally but be considered a tool for the
calculation of probabilities of observables.

(Faye 2014: on line)
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Faye’s confusion here is understandable. We analytic philosophers of science tend
to associate “symbolic” with “nonreferential” or “uninterpreted.” In particular,
with regard to a sentence X in a formal calculus, to say that “X is symbolic” means
precisely that X in uninterpreted, and so lacks a truth value. In other words, when
we hear “symbol,” we immediately think “does not purport to describe reality.”

However, the considerations of previous sections show that this usage of
“symbolic” does not make much sense when X is a mathematical object, such as
a wave function. Nor would it make much sense to attribute this usage of
“symbolic” to Bohr, who did not use words in exactly the way that analytic
philosophers of science have come to use them. When Bohr uses “symbolic,”
I assume that his meaning draws on a his peculiar educational background, which
was heavy on continental figures such as Kant, Goethe, Hegel, and Helmholtz.
I assume that his meaning was also shaped by his interactions with continental-
type philosophers such as Ernst Cassirer, and mathematicians such as his brother
Harald. Thus, when Bohr says something is “symbolic,” we should not immedi-
ately conclude that he means it in the sense of the uninterpreted predicate calculus.

Indeed, one of Bohr’s students, Christian Møller, asked him explicitly what he
meant by calling the wave function “symbolic.” In a 1928 letter, Bohr replies in so
many (!) words:

Regarding the question discussed in your letter about what was meant, when I in my article
in Naturwissenschaften, emphasized so strongly the quantum-theoretical method’s
symbolic character, I am naturally in complete agreement with you that every
description of natural phenomena must be based on symbols. I merely sought to
emphasize the fact, that this circumstance – that in quantum theory, we typically use the
same symbols we use in the classical theory – doesn’t justify our ignoring the large
difference between these theories, and in particular necessitates the greatest caution in
the use of the intuitive concepts [anskuelsformer] to which the classical symbols are
connected. Naturally, one doesn’t easily run this danger with the matrix formulation,
where the calculation rules, which diverge so greatly from the previously standard
algebraic ones, hold quantum theory’s special nature before our eyes. Furthermore, to
use the word “symbolic” for non-commutative algebra is a way of speaking that goes back
long before quantum theory, and which has entered into standard mathematical
terminology. When one thinks about the wave theory, it is precisely its “visualizability”
[anskuelighed] which is simultaneously its strength and its snare, and here by emphasizing
the approach’s [behandlingens] symbolic character, I was trying to bring to mind the
differences – required by the quantum postulate – from classical theories, which are hardly
ever sufficiently heeded.

(Bohr 1928, original in Danish)

As is typical with reading Bohr, one does not feel that the situation has been greatly
clarified. However, one thing is clear: Bohr does not intend to single out the
quantum state for operational treatment. If Bohr is an antirealist about the quantum
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state, then he is an antirealist about all of mathematical physics. For Bohr, all
mathematical representation is “symbolic,” whether observable or unobservable
aspects of reality are being represented. Among the symbolic representations of
physics, he would include the Fab of Maxwell’s equations, the gab of general
relativity, as well as functions representing the trajectories of material bodies
through spacetime. Bohr’s point might be summed up simply by saying that
mathematical objects are not sentences, and so they cannot “be read literally.”

To understand Bohr’s use of “symbolic,” it might also help to look at a
philosopher whose career ran in parallel with his. In fact, it is well known that
Bohr interacted extensively with Ernst Cassirer when the latter was composing his
book Determinismus und Indeterminismus in der Modernen Physik, first published
in 1937. Whether there is a more substantial overlap in their usage of “symbolic”
will have to await more detailed historical investigations.

Nonetheless, it is clear that there are many common themes in the views of Bohr
and Cassirer (see e.g., Pringe 2014). One such common theme is giving careful
thought to the way that mathematical objects can be used to represent the physical
world. In putting forward his views on this issue, Cassirer is clear that “symbolic”
should not be opposed to “representational.” The interesting question is not
whether something is representational, but rather how it represents. In particular,
Cassirer believes that the development of mathematics and physics in the ninteenth
century provides a particularly clear demonstration of the need to expand the
notion of representation beyond a simplistic “similarity of content” account.

Mathematicians and physicists were first to gain a clear awareness of this symbolic character
of their basic implements. . . . In place of the vague demand for a similarity of content
between image and thing, we now find expressed a highly complex logical relation, a general
intellectual condition, which the basic concepts of physical knowledge must satisfy.

(Cassirer 1955: 75)

For the former, more narrow, use of symbols, Cassirer uses the word Darstellings-
funktion. For the latter, more general, use of symbols, Cassirer uses the word
Bedeutungsfunktion. Thus, to relate back to our earlier analysis of “Y represents
X,” we might think that Darstellungsfunktion picks out a kind of representational
relation that licenses many inferences about X from Y , especially inferences having
to do with spatiotemporal properties. The paradigm case, of course, of such
representations are the directly geometric. In contrast, Bedeutungsfunktion picks
out a more general kind of representation relation that does not imply geometric
similarity between X and Y .

Bohr does not avail himself of Cassirer’s classification of symbolic forms.
However, he often does speak of things being “unvisualizable” (uanskuelig) –

opening a door to the deep dark recesses of the Kantian tradition. Bohr’s notion of
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representing something to visual intuition doubtless overlaps in important ways
with Cassirer’s notion of Darstellungsfunktion. And if there is any coherence in
Cassirer’s idea of moving toward Bedeutungsfunktion, then Bohr may be blazing
the same trail. In particular, when Bohr says that subatomic processes cannot be
visualized, he should not be taken as saying that quantum theory is nonrepresenta-
tional. Instead, Bohr might be groping his way toward a more nuanced account of
how mathematics can be used to represent physical reality.

8.9.2 Carnap

We began the chapter with a story about how the early interpreters of quantum
theory were operationalists. That story is often neatly combined with another story
that post-Quinean analytic philosophers love to tell: the story about how silly and
stupid the logical positivists were. According to this story, the logical positivists
viewed scientific theories as “mere calculi” for deriving predictions. Thus, the
story concludes, it is no surprise that Bohr et al. were operationalists about the
quantum state, given that operationalism had so thoroughly infected the prevailing
view of scientific theories.

If you have ever read a serious historical account of the origins of quantum
theory, you know that the first story is mostly propaganda. None of the pioneers of
quantum theory – Bohr, Heisenberg, Dirac, etc. – was a crass operationalist. And if
you have ever read a serious historical account of twentieth-century philosophy,
you also know that the second story is largely Quinean propaganda. In fact, Carnap
himself was a vocal critic of operationalism – long before he felt the pressure of
Quine’s critiques of the positivist program.

Some, especially philosophers, go so far as even to contend that these modern theories,
since they are not intuitively understandable, are not at all theories about nature but “mere
formalistic constructions”, “mere calculi”. But this is a fundamental misunderstanding of
the function of a physical theory.

(Carnap 1939: 210)

Notice how Carnap feels the same pressure that Bohr and Cassirer feel – the
pressure that the new theories of physics are not “intuitively understandable.”
Moreover, like Bohr and Cassirer, he refuses to take the breakdown of intuitive
understandability (or anskuelighed, or Darstellbarkeit) to demand a retreat to
operationalism. Instead, Carnap – like Bohr and Cassirer – asks us to think harder
about how our theories purport to represent physical reality.

Like Bohr, Carnap insists that the representational status of the quantum wave
function is not all that different from the situation of the symbols of classical
mathematical physics.
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If we demand from a modern physicist an answer to the question what he means by the
symbol “ψ” of his calculus, and are astonished that he cannot give an answer, we ought to
realize that the situation was already the same in classical physics. There the physicist
could not tell us what he meant by the symbol “E” in Maxwell’s equations. . . .Thus the
physicist, although he cannot give us a translation into everyday language, understands the
symbol “ψ” and the laws of quantum mechanics. He possesses the kind of understanding
which alone is essential in the field of knowledge and science.

(Carnap 1939: 210–211)

Interestingly, the words of Carnap here are echoed – quite unintentionally, I am
sure – by Wallace and Timpson.

. . .it’s not as if we really have an intuitive grasp of what an electric or magnetic field is,
other than indirectly and by means of instrumental considerations. . . .Thus, it seems that
we gain a basic understanding of the electromagnetic field by seeing it as a property of
spatial regions, and our further understanding must be mediated by reflecting on its role in
the theory. . . .beyond that there doesn’t seem to be much further to be grasped.

(Wallace and Timpson 2010: 700)

We might just add that the concept of spatial regions does not provide us with a
truly Archimedian reference point – for these regions themselves are understood in
a mediated way, via their description in physical theory.

At this point, it should be thoroughly unclear how the views of Bohr, Cassirer,
and Carnap differ from some of the more moderate and reasonable quantum state
realists. To one such view we now turn.

8.10 The Nomological View

According to the cutting-edge survey of Chen (2018), there are three versions of
wave function realism – the two ψ-field views and a “nomological view,” where
the wave function represents a law of nature (Goldstein and Zanghì 2013, Esfeld
2014, Miller 2014, Callender 2015, Esfeld and Deckert 2017). Thus, if we were to
regiment the nomological view, we might say that the wave function plays the
theoretical role of a proposition, or perhaps of a rule for generating propositions.
The theoretical role of propositions is, of course, quite different than the theoretical
role of names or even variables, both of which are used to denote existing things.
Thus, only by stretching the word “ontological” beyond the breaking point could
we say that the nomological view is ontological. No matter what view of laws we
take, a law is not a thing and is not in the domain of quantification of a physical
theory. Thus, according to the nomological view, the wave function is not a beable.

Why then should the nomological view of the wave function be called a realist
view if it does not treat the wave function as corresponding to an existing thing?
Presumably, nomologists would say that what makes their view realist is that the
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propositions encoded in ψ are objectively true, i.e., they correspond to reality. But
what then are these propositions that are encoded in ψ? Of course, Bohmians have
an answer ready at hand: ψ encodes propositions about the trajectories of particles.

Notice that the specific Bohmian answer is not implicit in the very idea that ψ
encodes true propositions. Even a rank operationalist will say that ψ encodes true
propositions – about the probabilities of measurement outcomes. Only we might
question whether these propositions are “objectively true,” because probabilities of
measurement outcomes are indexed by measurements, and the latter has yet to be
objectively defined.

So what makes the nomological view realist? Is it simply that ψ encodes
objectively true propositions? Or is it that ψ encodes true propositions about
particle trajectories? I would be loath to accept the second answer, because it
would make realism hostage to one idiosyncratic ontological picture, viz., a
particle ontology. Surely one can be a realist and have some sort of gunky
ontology, or a field ontology. So, it seems that realist-making feature of the
nomological view is merely its commitment to the idea that ψ represents object-
ively real features of the world. But now, if that is enough to make a view realist,
then Healey’s view is also a realist view. For Healey says that each physical
situation is correctly represented by at most one quantum state. Healey and the
nomologists agree that ψ represents objectively real features of the world.

Nor can we say that the nomological view is more realist than Healey’s because
it takes ψ to be a direct representation of reality. The representation relation
posited by the nomological view is every bit as indirect and nuanced as that
posited by Healey (or by Bohr for that matter). Indeed, the nomological view
includes an intricate translation scheme from mathematical properties of ψ to
various meaningful physical statements, some of which are about occurent states
of affairs, and some of which are about how things will change as time progresses.
Thus, in terms of how ψ represents, the nomological view is closer to the views of
Healey, Bohr, and Carnap than it is to ψ-field views. The nomologists may be
horrified to hear this, for they take great pride in being realists. But recall that
Bohm often emphasized that his point of view was not so radically different from
Bohr’s. He even offered his point of view as a clarification of Bohr’s. Perhaps then
the nomological view could be thought of as an attempt to clearly articulate some
of the things that Bohr was trying to say about the wave function.

8.11 Conclusion

The primary aim of this chapter was to investigate the meaning of realism about
quantum theory, and in particular, realism about the quantum state. We found that,
for the most part, these phrases are empty of substantive content. They are emotive
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catch phrases that are meant to muster the troops – and perhaps to sell books. But
please don’t get me wrong. I am not saying that there are no substantive questions
about how to interpret the quantum state. First of all, dissolving the antirealism/
realism distinction does not solve the measurement problem. There is still the
thorny issue of why it appears to us that measurements have outcomes. Second,
there are genuine disagreements about how to use quantum states – even if these
disagreements do not correlate directly with a distinction between “real” and
“not real.”

First, there is a genuine question of how to think of the relation of quantum
states to physical situations. (For simplicity, I will suppose that a physical situation
is picked out by an ordinary language description, for example, by the sorts of
instructions that one might give to an engineer or to a postdoc in the lab.) At one
extreme, we have objectivists who think that each such situation corresponds to a
unique, correct quantum state. At the opposite extreme, we have the Quantum
Bayesians who propose no correctness standards whatsoever between physical
situations and quantum states. For these QBists, a quantum state just is a person’s
point of view – it is neither correct nor incorrect, appropriate or inappropriate.
Between these two extremes, we have views like Rovelli’s, where each physical
situation can be described equally by at least two quantum states, depending on
one’s choice of a direction of time. Some people also think that Bohr was a
nonobjectivist about quantum states (see Zinkernagel 2016). However, I find that
view hard to square with Bohr’s repeated pronouncements of the “objectivity of
the quantum-mechanical description.”

I propose that we stop talking about the ill-defined notion of quantum state
realism, and that we instead start talking about these sorts of questions, e.g.,
whether quantum theory comes with objective standards for the ascription of states
to physical situations. First of all, what role do physical situations, described in
ordinary language, play in this debate? Could we replace “physical situation” with
something more neutral and description-free, such as “object” or “system”? The
problem with that suggestion is that the bare notion of an object or a system cannot
give us any sort of standard for comparison. For example, we might say:
“According to Healey, for each object X, there is a unique correct quantum state.”
But how does Healey individuate objects? If he has different standards for indi-
viduating objects than Rovelli has, then their apparently diverging views might in
fact agree. Thus, the question of appropriate use of quantum states requires a
target, or standard of reference, on which all parties antecedently agree. The notion
of a “physical situation” is supposed to offer a plausible standard of reference.

I have already suggested a shift from the ontological question: Do states exist?
to the representational question: How do states represent? Now I am suggesting
that this representational question be given a normative reading: What are the rules
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governing the use of quantum states? That, I believe, is the real issue at stake,
although it is masked by emotionally charged words such as “ontological status.”

There is a second question, closely related to the first one. Should we apply
unitary dynamics without exception? Some people say yes (e.g., Bohm, Everett,
Wallace), and others say no (e.g., Ghirardi-Rimini-Weber [GRW], Rovelli,
Healey). But even this disagreement is not as clear-cut as it may seem. Even those
who believe in the universal validity of unitary dynamics allow themselves to use
“effective states.” The “true state,” they say, follows unitary dynamics. But for
calculational purposes, there can be great advantages to using the effective state.

I am no verificationist, and so I do not propose that we collapse the distinction
between real and effective states. Nonetheless, I am interested here in the rules for
using states, i.e., for deciding whether one ought to use the state that results from
unitary evolution or whether one is permitted to use the state that results from
application of the projection postulate. Or, to put it in explicitly representational
language: The question is whether the state that results from unitary evolution is
the only one that is “apt” to one’s situation or whether the state resulting from the
projection postulate might also be “apt” to one’s situation. Interestingly, all parties
seem to agree that the state resulting from the projection postulate is “apt” in some
sense. Even the most fervent anticollapsers will tell you that the projected state is
correct for all practical purposes. Then they will remind you that it is not the “real”
state. But I would then ask: not the real state of what? We are back again to the
question of how to identify the target X of our representation via a quantum state.
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