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Reductio ad Absurdum




Introduction

@ |dea behind Reductio ad Absurdum: Show that something is not the
case (—A) by showing that it (A) leads, via logically valid reasoning,
to a contradiction.

e RA is truly powerful if combined with DN-elimination to establish positive
conclusions.
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V/2 is not a rational number

Proof. Assume for reductio ad absurdum that v/2 is rational, i.e. that v/2 = Z with
integers a, b in lowest terms (gcd(a, b) = 1, b # 0). Then
2
_ 2 2 ny2
Hence a2 is even, so a is even; write a = 2k. Substituting,

(2k)? =2b* = 4k*> =2b* = b* =2k?

so b? is even and therefore b is even.

Thus both a and b are even, contradicting that f) is in lowest terms. Therefore, v/2 is
irrational. O
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Reductio ad Absurdum

n,...,nj (n) BA-B

n,...,m.....nj (k) —A m, n RA
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Reductio ad Absurdum

A.... A.BF L

A.... A, - —B
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P =P
—-P

(1)
(2)
(3)

12 (4) PA=P
(5) P
(6)
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1,2 MP
3,2 Al
2,4 RA
5 DN
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DeMorgan's laws

1 (1) =(PVvQ) A

2 (2) P A

2 (3) PvQ@ 2 VI
12 (4 (Pv@Q)A—(PVQ) 3,1 Al

1 (5) —P 2,4 RA
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Material conditional

Show —|(—|P V Q) = —\(P — Q)

1 (1) —(=PVQ) A
2 (2) P—Q A
1 (3) —-—P see previous proof
1 (4) P 3 DN
1,2 (5 Q@ 2,4 MP
12 (6) -PVQ 5 VI
12 (7) (-PVQ)A—=(-PV Q) 61Al
1 8 —(P—Q) 2,7 RA
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Law of Non-Contradiction

(2) —|(P/\—\P) 1,1 RA
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Ex Falso Quodlibet (EFQ)

1 (1) P A
2 (2) -P A
3 (3) -Q A
12 (4) PA-P 1,2 Al
12 (5 —--Q 3,4 RA
12 (6) Q 5 DN

It is not required that the assumption occurs in the dependencies of the
contradiction.
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Disjunctive Syllogism

Pv@-PF Q
1 (1) PvVQ A
2 (2) =P A
3 3 P A
23 (4 @ EFQ
5 (5 @ A
12 (6) Q 13455 VE

PHI 201 Lecture 3 12 /44



DeMorgan's Laws

—~PV-Q F —(PAQ)

1 (1) -P A

2 (2) PAQ A

2 (3) P 2 AE
12 (4 PA-P 3,1 Al

1 (5) —(PAQ) 2,4 RA
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DeMorgan's Laws

-P,-Q —\(P V Q)

By DS we have =P, PV Q F Q.
It follows that =P, PV Q,—-Q F L.
By RA, =P, =Q —|(P V Q)
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1,3,7,8,8 VE
9,4 Al
1,10 RA
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Law of Excluded Middle

1 (1) —(PV-=P) A
> (2) P A
2 (3) Pv-=P 2 VI
12 (4 (PV-P)A—=(PV-=P) 31NAI
1 (5) -P 2.4 RA
1 (6) PV=P 5 VI
1 (7) (PV=P)A=(PV—P) 61Al
(8) —=(PV-—P) 1,7 RA
(9) PV-P 8 DN
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More difficult proofs

To show: P— (QVR) F (P—= Q)V (P — R)

@ Strategy 1: Assume negation of conclusion, apply DeMorgans. The
result is two negated conditionals, which are equivalent to
conjunctions.

e Strategy 2: Derive PV =P, then argue by cases. Recall that
-P+P— Q.
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Useful sequents

Commutativity: AAB - BAA
AVB 4= BV A

Associativity: (ANB)ANC 4 AAN(BAC)
(AvB)VC 4 AV (BV ()
Distributivity: AA(BV C) 4+ (AAB)V(AAC)
AV(BANC) 4= (AVB)A(AV C)
De Morgan’s I: —(AV B) 4+ -AA-B
-(AAB) 4+ -Av B
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Useful sequents

Material Conditional: A— B -+ -AV B
-(A— B) 4 AAN-B

Excluded Middle: AV -A
Disjunctive Syllogism: AV B, -A + B
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Truth tables




How do you know if something can be proven?

@ If you prove Ay, ..., A, F B, then that argument form is truth
preserving (in the sense that we are about to make precise).

e If you fail to prove Ay, ..., A, B, that doesn't prove that it is not
provable.

@ If you can show that Ay, ..., A, B is not truth-preserving, then
there cannot possibly be a proof of A;,..., A, F B.
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Semantic validity

@ An argument form is semantically invalid if there is an instance of
that form where the premises are true and the conclusion is false.

@ A counterexample to the validity of an argument is an assignment of truth
values to the atomic sentences that makes that argument'’s premises true and
its conclusion false.

o We write Ay, ..., A, E B to indicate that the argument from
Ay, ..., A, to B is semantically valid.
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Ways Things Could Be
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Truth Tables

Conjunction A Negation —
P Q|PAQ P|-P
1 1] 1 1[0
1 0| 0 0| 1
0 1| o0
0 0| 0

Disjunction Vv

Conditional —

P—Q

P Q
1 1
P Q|PVQ 1 0
1 1 1 0 1
1 0 1 0 0
0 1 1
0 0 0
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Detailed truth table for (P A =Q) — R

PQR|(PA-Q) =R
111, 1001 1 1
1 10/, 1001 10
101/ 1110 11
100/ 1110 00
01 1] 0001 1 1
010/ 0001 10
001, 0010 1 1
000/ 0010 1 0

This sentence is a contingency: true in some scenarios and false in other
scenarios
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Material conditional

O O = =T

Q
1
0
1
0

|—‘|—\O|—1\L

“If the Germans won World War Il then French is the official language of
instruction at Princeton.”
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Negative paradox is valid

O O = =T
O = O L
= = O O

|—\|—~O|—~\L

In every case where the premise =P is true, the conclusion P — @ is also
true.
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Affirming the consequent is invalid

P—QQHFP

P—Q

P
1
1
0
0

O~ O L
— = o | ]

In row 3, both premises (P — @ and Q) are true, but the conclusion P is
false. Therefore the argument form is invalid.
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Ex Falso Quodlibet: P, =P . Q@

P @ | —P | Premises all true? | Conclusion @
1 110 no 1
1 0] 0 no 0
0 1|1 no 1
0 0] 1 no 0

The premises P and —P can never both be true. So there is no row where

all premises are true and the conclusion false. Hence the argument form is
valid.
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Using truth tables to guide
proofs




Is there a correctly written proof with line fragments like this?

1 (1) PVQ A

1(r;)P
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Is there a correctly written proof with line fragments like this?

1 (1) PvQ A

1(r;)P

No there cannot be. Our proof rules are sound, so they cannot prove a
line that is semantically invalid.
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Soundness

Fact: If there is a correctly written proof that ends with A¢,..., A, F B,
then Ay,... A, F B.

Consequently, if Ay,..., A, B, then there cannot be a correctly written
proof that ends with Aq,..., A, F B.

In other words, if there is a counterexample, then there is no proof.
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Is there a correctly written proof with line fragments like this?

1 (1) P—(QVR) A

1 (n) (P—Q)V(P—R)
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Completeness

Fact: If A;,..., A, E B, then the sequent Aq,...,A, F B can be proven.

In other words: if the argument is truth-preserving, then there is a proof.
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Semantic reasoning towards proof

We show that P - (QV R) F (P — Q) V (P — R).

Consider a row in the truth table where (P — Q) V (P — R) is false.
Both P — @ and P — R are false on this row.

P is true on this row while both @ and R are false on this row.
But then P — (Q V R) is false on this row.

Therefore, in every row where (P — Q) V (P — R) is false, P — (Q V R)
is also false.
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From informal to formal

We show that P -+ (QV R)F (P — Q) V(P — R).

Consider a row in the truth table where (P — Q) V (P — R) is false.
Both P — @ and P — R are false on this row.

P is true on this row while both @ and R are false.

But then P — (Q V R) is false on this row.

Therefore, in every row where (P — Q) V (P — R) is false,
P — (Q V R) is also false.
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From informal to formal

We show that P -+ (QV R)F (P — Q) V(P — R).

Assume —((P — Q) V (P — R))

Both P — @ and P — R are false on this row.

P is true on this row while both @ and R are false.
But then P — (Q V R) is false on this row.

Therefore, in every row where (P — Q) V (P — R) is false,
P — (Q V R) is also false.
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From informal to formal

We show that P -+ (QV R)F (P — Q) V(P — R).

Assume —((P — Q) V (P — R))

Then we have =(P — Q) and =(P — R)

P is true on this row while both @ and R are false.
But then P — (Q V R) is false on this row.

Therefore, in every row where (P — Q) V (P — R) is false,

P — (Q V R) is also false.
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From informal to formal

We show that P -+ (QV R)F (P — Q) V(P — R).

Assume —((P — Q) V (P — R))
Then we have =(P — Q) and =(P — R)
Therefore P, =@, and =R

But then P — (Q V R) is false on this row.

Therefore, in every row where (P — Q) V (P — R) is false,
P — (Q V R) is also false.
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From informal to formal

We show that P -+ (QV R)F (P — Q) V(P — R).

Assume —((P — Q) V (P — R))

Then we have =(P — Q) and =(P — R)
Therefore P, =@, and =R

So (P —=(QVR))

Therefore, in every row where (P — Q) V (P — R) is false,
P — (Q V R) is also false.
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From informal to formal

We show that P -+ (QV R)F (P — Q) V(P — R).

Assume =((P — Q) V (P — R))

Then we have =(P — Q) and =(P — R)
Therefore P, =@, and =R

So =(P = (QV R))
Hence -((P —- Q) V(P = R))F =(P = (Q V R))
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Alternate proof strategy

| Excluded Middle |

P v =P
Assume —P
Derive @ V R Derive P — Q@

Assume P

Derive (P — Q) V (P — R) Derive (P — Q) V (P — R)

N\ /

Conclude
(P - Q) V(P — R)

PHI 201 Lecture 3 37 /44



L L L L e T R

O 0 NO OB WIN -
—_—

(P—=Q)—P

-P

P
PA—-P
—Q
@

Q
P—Q
p
PAN-P
——P

P

(P—-Q)—P)—P 112CP
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Summary

e With RA, we have completed the set of inference rules for
propositional logic.

@ These rules are provably sound: they do not permit a proof of
something that has a truth-table counterexample.

@ These rules are provably complete: anything semantically valid can
be proven.
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Supplemental material




Redundancies in Our System

e With RA, Modus Tollens (MT) and DN-Intro can be eliminated.
e Example: simulate MT using RA.

1 (1) P—Q A
2 (20 -@ A
3 (3) P A
13 4 Q@ 1,3 MP
123 (5) QAN-Q 4,2 Al
L2 (6) -P 3,5 RA
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Simulating DN-Intro

1 (1) P
> (2) -P
12 (3) PA-P
1 (4) -—-P
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Without RA

RA itself can be simulated with other rules.
Suppose [, PF Q A —~Q. Then:

olFP—>Qand P — —Q.

@ By contraposition: '+ —-Q — —P.
@ Hence - P — =P,

@ But P— —-PF —=P.

So ' = =P. Still, RA feels more natural and symmetric.

PHI 201 Lecture 3

43 /44



More difficult proofs

To show: - (P — Q) V (Q — P)

@ Strategy 1. Assume —~((P — Q) V (Q — P)). Use DM to get
—(P — Q) and =(Q — P). The former entails P while the latter
entails —P.

@ Strategy 2: Derive Q V —@Q, then argue by cases using positive
paradox and negative paradox in turn.
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