PHI 201 Lecture 3

Hans Halvorson

Reductio ad Absurdum

Introduction

- Idea behind Reductio ad Absurdum: Show that something is **not** the case $(\neg A)$ by showing that it (A) leads, via logically valid reasoning, to a contradiction.
 - RA is truly powerful if combined with DN-elimination to establish positive conclusions.

$\sqrt{2}$ is not a rational number

Proof. Assume for reductio ad absurdum that $\sqrt{2}$ is rational, i.e. that $\sqrt{2} = \frac{a}{b}$ with integers a, b in lowest terms (gcd(a, b) = 1, $b \neq 0$). Then

$$2=\frac{a^2}{b^2} \Rightarrow a^2=2b^2.$$

Hence a^2 is even, so a is even; write a = 2k. Substituting,

$$(2k)^2 = 2b^2 \Rightarrow 4k^2 = 2b^2 \Rightarrow b^2 = 2k^2,$$

so b^2 is even and therefore b is even.

Thus both a and b are even, contradicting that $\frac{a}{b}$ is in lowest terms. Therefore, $\sqrt{2}$ is irrational. \Box

Reductio ad Absurdum

$$m$$
 (m) A A \vdots n_1, \ldots, n_j (n) $B \wedge \neg B$ \vdots $m_1, \ldots, \widehat{m}, \ldots, n_j$ (k) $\neg A$ $m, n RA$

Reductio ad Absurdum

$$\frac{A_1,\ldots,A_n,B\vdash\bot}{A_1,\ldots,A_n\vdash\neg B}$$

1 (1)
$$\neg P \rightarrow P$$

2 (2) $\neg P$
1,2 (3) P
1,2 (4) $P \land \neg P$
1 (5) $\neg \neg P$

DeMorgan's laws

Material conditional

Show
$$\neg(\neg P \lor Q) \vdash \neg(P \to Q)$$

1
 (1)

$$\neg(\neg P \lor Q)$$
 A

 2
 (2)
 $P \to Q$
 A

 1
 (3)
 $\neg \neg P$
 see previous proof

 1
 (4)
 P
 3 DN

 1,2
 (5)
 Q
 2,4 MP

 1,2
 (6)
 $\neg P \lor Q$
 5 \lor I

 1,2
 (7)
 $(\neg P \lor Q) \land \neg(\neg P \lor Q)$
 6,1 \land I

 1
 (8)
 $\neg(P \to Q)$
 2,7 RA

Law of Non-Contradiction

1 (1)
$$P \wedge \neg P$$
 A
(2) $\neg (P \wedge \neg P)$ 1,1 RA

Ex Falso Quodlibet (EFQ)

It is **not** required that the assumption occurs in the dependencies of the contradiction.

Disjunctive Syllogism

$$P \lor Q, \neg P \vdash Q$$

$$\begin{array}{cccc}
1 & (1) & P \lor Q \\
2 & (2) & \neg P \\
3 & (3) & P \\
2,3 & (4) & Q \\
5 & (5) & Q \\
1,2 & (6) & Q
\end{array}$$

DeMorgan's Laws

DeMorgan's Laws

$$\neg P, \neg Q \vdash \neg (P \lor Q)$$

By DS we have $\neg P, P \lor Q \vdash Q$.

It follows that $\neg P, P \lor Q, \neg Q \vdash \bot$.

By RA, $\neg P$, $\neg Q \vdash \neg (P \lor Q)$.

Law of Excluded Middle

1	(1)	$\neg (P \lor \neg P)$	Α
2	(2)	P	Α
2	(3)	$P \vee \neg P$	2 VI
1,2	(4)	$(P \vee \neg P) \wedge \neg (P \vee \neg P)$	$3,1 \land I$
1	(5)	$\neg P$	2,4 RA
1	(6)	$P \vee \neg P$	5 VI
1	(7)	$(P \vee \neg P) \wedge \neg (P \vee \neg P)$	$6,1 \land I$
	(8)	$\neg\neg(P\vee\neg P)$	1,7 RA
	(9)	$P \vee \neg P$	8 DN

More difficult proofs

To show:
$$P \to (Q \lor R) \vdash (P \to Q) \lor (P \to R)$$

- Strategy 1: Assume negation of conclusion, apply DeMorgans. The result is two negated conditionals, which are equivalent to conjunctions.
- Strategy 2: Derive $P \vee \neg P$, then argue by cases. Recall that $\neg P \vdash P \rightarrow Q$.

Useful sequents

Commutativity:
$$A \wedge B \dashv \vdash B \wedge A$$

$$A \lor B \dashv\vdash B \lor A$$

Associativity:
$$(A \land B) \land C \dashv\vdash A \land (B \land C)$$

$$(A \lor B) \lor C \dashv\vdash A \lor (B \lor C)$$

Distributivity:
$$A \wedge (B \vee C) \dashv (A \wedge B) \vee (A \wedge C)$$

$$A \vee (B \wedge C) \dashv \vdash (A \vee B) \wedge (A \vee C)$$

De Morgan's I:
$$\neg (A \lor B) \dashv \vdash \neg A \land \neg B$$

$$\neg(A \land B) \dashv\vdash \neg A \lor \neg B$$

Useful sequents

Material Conditional: $A \rightarrow B \dashv \vdash \neg A \lor B$

 $\neg (A \rightarrow B) \dashv \vdash A \land \neg B$

Excluded Middle: $\vdash A \lor \neg A$

Disjunctive Syllogism: $A \lor B$, $\neg A \vdash B$

Truth tables

How do you know if something can be proven?

- If you prove $A_1, \ldots, A_n \vdash B$, then that argument form is truth preserving (in the sense that we are about to make precise).
- If you fail to prove $A_1, \ldots, A_n \vdash B$, that doesn't prove that it is not provable.
- If you can show that $A_1, \ldots, A_n \vdash B$ is not truth-preserving, then there cannot possibly be a proof of $A_1, \ldots, A_n \vdash B$.

Hans Halvorson PHI 201 Lecture 3 21 / 44

Semantic validity

- An argument form is **semantically invalid** if there is an instance of that form where the premises are true and the conclusion is false.
 - A counterexample to the validity of an argument is an assignment of truth values to the atomic sentences that makes that argument's premises true and its conclusion false.
- We write $A_1, \ldots, A_n \models B$ to indicate that the argument from A_1, \ldots, A_n to B is semantically valid.

Hans Halvorson PHI 201 Lecture 3 22 / 44

Ways Things Could Be

Р	Q	R
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0

Truth Tables

Conjunction \land

Ρ	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Disjunction \vee

$$\begin{array}{c|cccc} P & Q & P \lor Q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ \end{array}$$

Negation ¬

$$\begin{array}{c|c} P & \neg P \\ \hline 1 & 0 \\ 0 & 1 \end{array}$$

Conditional \rightarrow

$$\begin{array}{c|cccc} P & Q & P \to Q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

Detailed truth table for $(P \land \neg Q) \rightarrow R$

Ρ	Q	R	(Ρ	\wedge	\neg	Q)	\rightarrow	R
1	1	1		1	0	0	1		1	1
1	1	0		1	0	0	1		1	0
1	0	1		1	1	1	0		1	1
1	0	0		1	1	1	0		0	0
0	1	1		0	0	0	1		1	1
0	1	0		0	0	0	1		1	0
0	0	1		0	0	1	0		1	1
0	0	0		0	0	1	0		1	0

This sentence is a **contingency**: true in some scenarios and false in other scenarios

Hans Halvorson PHI 201 Lecture 3 25 / 44

Material conditional

Р	Q	$P \rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

"If the Germans won World War II then French is the official language of instruction at Princeton."

Hans Halvorson PHI 201 Lecture 3 26 / 44

Negative paradox is valid

Ρ	Q	$\neg P$	P o Q
1	1	0	1
1	0	0	0
0	1	1	1
0	0	1	1

In every case where the premise $\neg P$ is true, the conclusion $P \to Q$ is also true.

Hans Halvorson PHI 201 Lecture 3 27 / 44

Affirming the consequent is invalid

$$P \rightarrow Q, Q \not\models P$$

Ρ	Q	P o Q
1	1	1
1	0	0
0	1	1
0	0	1

In row 3, both premises $(P \to Q \text{ and } Q)$ are true, but the conclusion P is false. Therefore the argument form is **invalid**.

Ex Falso Quodlibet: $P, \neg P :: Q$

Р	Q	$\neg P$	Premises all true?	Conclusion Q
1	1	0	no	1
1	0	0	no	0
0	1	1	no	1
0	0	1	no	0

The premises P and $\neg P$ can never both be true. So there is no row where all premises are true and the conclusion false. Hence the argument form is **valid**.

Hans Halvorson PHI 201 Lecture 3 29 / 44

Using truth tables to guide proofs

Is there a correctly written proof with line fragments like this?

Is there a correctly written proof with line fragments like this?

No there cannot be. Our proof rules are **sound**, so they cannot prove a line that is semantically invalid.

Soundness

Fact: If there is a correctly written proof that ends with $A_1, \ldots, A_n \vdash B$, then $A_1, \ldots, A_n \models B$.

Consequently, if $A_1, \ldots, A_n \not\models B$, then there cannot be a correctly written proof that ends with $A_1, \ldots, A_n \vdash B$.

In other words, if there is a **counterexample**, then there is no proof.

Hans Halvorson PHI 201 Lecture 3 32 / 44

Is there a correctly written proof with line fragments like this?

Completeness

Fact: If $A_1, \ldots, A_n \models B$, then the sequent $A_1, \ldots, A_n \vdash B$ can be proven.

In other words: if the argument is truth-preserving, then there is a proof.

PHI 201 Lecture 3 34 / 44

Semantic reasoning towards proof

We show that $P \to (Q \lor R) \vDash (P \to Q) \lor (P \to R)$.

Consider a row in the truth table where $(P \to Q) \lor (P \to R)$ is false.

Both $P \rightarrow Q$ and $P \rightarrow R$ are false on this row.

P is true on this row while both Q and R are false on this row.

But then $P \to (Q \lor R)$ is false on this row.

Therefore, in every row where $(P \to Q) \lor (P \to R)$ is false, $P \to (Q \lor R)$ is also false.

Hans Halvorson PHI 201 Lecture 3 35 / 44

We show that $P \to (Q \lor R) \vdash (P \to Q) \lor (P \to R)$.

Consider a row in the truth table where $(P \to Q) \lor (P \to R)$ is false.

Both $P \rightarrow Q$ and $P \rightarrow R$ are false on this row.

P is true on this row while both Q and R are false.

But then $P \to (Q \lor R)$ is false on this row.

Therefore, in every row where $(P \rightarrow Q) \lor (P \rightarrow R)$ is false,

 $P \rightarrow (Q \lor R)$ is also false.

We show that $P \to (Q \lor R) \vdash (P \to Q) \lor (P \to R)$.

Assume $\neg((P \rightarrow Q) \lor (P \rightarrow R))$

Both $P \rightarrow Q$ and $P \rightarrow R$ are false on this row.

P is true on this row while both Q and R are false.

But then $P \to (Q \lor R)$ is false on this row.

We show that $P \to (Q \lor R) \vdash (P \to Q) \lor (P \to R)$.

Assume
$$\neg((P \rightarrow Q) \lor (P \rightarrow R))$$

Then we have $\neg(P \to Q)$ and $\neg(P \to R)$

P is true on this row while both Q and R are false.

But then $P \to (Q \lor R)$ is false on this row.

We show that
$$P \to (Q \lor R) \vdash (P \to Q) \lor (P \to R)$$
.

Assume
$$\neg((P \rightarrow Q) \lor (P \rightarrow R))$$

Then we have
$$\neg(P \to Q)$$
 and $\neg(P \to R)$

Therefore
$$P$$
, $\neg Q$, and $\neg R$

But then
$$P \to (Q \lor R)$$
 is false on this row.

We show that
$$P \to (Q \lor R) \vdash (P \to Q) \lor (P \to R)$$
.

Assume
$$\neg((P \rightarrow Q) \lor (P \rightarrow R))$$

Then we have
$$\neg(P \to Q)$$
 and $\neg(P \to R)$

Therefore
$$P$$
, $\neg Q$, and $\neg R$

So
$$\neg(P \rightarrow (Q \lor R))$$

We show that
$$P \to (Q \lor R) \vdash (P \to Q) \lor (P \to R)$$
.

Assume
$$\neg((P \rightarrow Q) \lor (P \rightarrow R))$$

Then we have
$$\neg(P \to Q)$$
 and $\neg(P \to R)$

Therefore
$$P$$
, $\neg Q$, and $\neg R$

So
$$\neg(P \rightarrow (Q \lor R))$$

Hence
$$\neg((P \rightarrow Q) \lor (P \rightarrow R)) \vdash \neg(P \rightarrow (Q \lor R))$$

Alternate proof strategy

1	(1)	(P o Q) o P	Α
2	(2)	$\neg P$	Α
3	(3)	Р	Α
2,3	(4)	$P \wedge \neg P$	2,3 ∧I
5	(5)	$\neg Q$	Α
2,3	(6)	$\neg \neg Q$	5,4 RA
2,3	(7)	Q	6 DN
2	(8)	P o Q	3,7 CP
1,2	(9)	Р	1,8 MP
1,2	(10)	$P \wedge \neg P$	9,2 ∧1
1	(11)	$\neg\neg P$	2,10 RA
1	(12)	P	11 DN
Ø	(13)	$((P \to Q) \to P) \to P$	1,12 CP

Summary

- With RA, we have completed the set of inference rules for propositional logic.
- These rules are provably **sound**: they do not permit a proof of something that has a truth-table counterexample.
- These rules are provably **complete**: anything semantically valid can be proven.

Supplemental material

Redundancies in Our System

- With RA, Modus Tollens (MT) and DN-Intro can be eliminated.
- Example: simulate MT using RA.

A A A 1,3 MP 4,2 ∧I 3,5 RA

Simulating DN-Intro

```
\begin{array}{cccc}
1 & (1) & P \\
2 & (2) & \neg P \\
1,2 & (3) & P \land \neg P \\
1 & (4) & \neg \neg P
\end{array}
```

Without RA

RA itself can be simulated with other rules.

Suppose $\Gamma, P \vdash Q \land \neg Q$. Then:

- $\Gamma \vdash P \rightarrow Q$ and $\Gamma \vdash P \rightarrow \neg Q$.
- By contraposition: $\Gamma \vdash \neg Q \rightarrow \neg P$.
- Hence $\Gamma \vdash P \rightarrow \neg P$.
- But $P \rightarrow \neg P \vdash \neg P$.

So $\Gamma \vdash \neg P$. Still, RA feels more natural and symmetric.

More difficult proofs

To show: $\vdash (P \rightarrow Q) \lor (Q \rightarrow P)$

- Strategy 1: Assume $\neg((P \to Q) \lor (Q \to P))$. Use DM to get $\neg(P \to Q)$ and $\neg(Q \to P)$. The former entails P while the latter entails $\neg P$.
- Strategy 2: Derive $Q \vee \neg Q$, then argue by cases using positive paradox and negative paradox in turn.